
I w w ~ l

1 . *

- / / , 7 - 2 .

+

B Y T H E C O M P T R O iE R G E N E R A L

R e p o rt T o T h e C o n g ress
O F T H E U N ITE D S T A T E S

Im p rov i ng C o b o l A p p lica tio n s C a n
R e cove r S ign i f icant C o m p u te r R e sou rces

C o m p u ter app l i ca t ions wr i t ten in the C O B O L
p r o g r amm i n g l a n g u a g e a r e u s ed to d o a l a r ge
po r t i on of Fede r a l da ta p rocess ing a n d con -
s u m e a l a r ge po r t i on of Fede r a l compu te r re -
sources. S u c h app l i ca t ions can somet imes b e
imp r oved to d o the j ob wi th fewer compu te r
resources, thus f ree ing s ign i f icant r esou rces
for o the r jobs, a n d p e r h aps de fe r r i ng com-
pu te r r ep l acement .

T h e Nat i ona l B u r e a u of S tanda rds shou l d
i ssue g u i d ance o n the u se of C O B O L for
app l icat ions, a n d agency A D P m a n a g e m e n t

j s hou l d r ev i ew app l i ca t ions per iod ica l ly for
/ poss ib l e imp rovements .

A F M D - 8 2 - 4
A P R IL I ,1982

hqumt for copim of GAO rqwts should be
WlttO:

U.S. GIMWII Acenmting Dffiae
Dwmsnt Handling and Information

&vii Facility
P.O. Box 6016
GaWrg, Md. 20780

T&whone (202) 27M241

Tha first five copias of individual reports arf4
fm ;If charm. Additiinal copies of bound
audit repwts dly) $3.26 8iBch. Additional
copies of unbound report (i.e., letter reports)
and most &wr publications are $1.00 wch.
Thawa will be a 25% diwxwnt on all orders for
100 olr mem copies mailed to a single address.
Salss MKJWS must be prepaid on B ah, check,
or money order lx&. Check should be made
out to the ‘Superintendent of Documents”.

,; ”
.,

COMPTROLLER GENERAL OF THE UNITED STATES

WABl i lNQTON D.C. 2OS40

B-206179

To the President of the Senate and the
Speaker of the House of Representatives

Computer software is the most important part of automatic data
processing systems today. It is expensive to develop and:maintain,
and poorly developed software wastes computer resources in opera-
tion.

This report discusses reducing the computer costs of Federal
computer applications and includes a checklist to guide ADP man-
agers in such work. We made this review because we wanted to ex-
plore the management implications and economics of improving

~ applications written in COBOL-- the most widely used Federal pro-
gramming language.

We are sending copies of this report to the Secretary of
Commerce and to the Administrator of General Services.

Comptroller General '
of the United States

COMPTROLLER GENERAL'S
REPORT TO THE CONGRESS

IMPROVING COBOL APPLICATIONS
CAN RECOVER SIGNIFICANT
COMPUTER RESOURCES

DIGEST --m-m-*

Federal use of computers and computer programs
is extensive. COBOL--the Common Business Ori-
ented Language-- is the most widespread program-
ming language used for Federal business applica-
tions. Business applications are automated with
computer programs written in COBOL, with files,
and with a computing environment in which they
are operated. COBOL applications consume machine
resources in processing data and reporting and
storing results. The extent to which COBOL ap-
plications consume machine resources depends
upon how they are written and the environment
in which they operate.

This report addresses opportunities for savings
by reducing the resources consumed by existing
COBOL applications (see ch. 2) but warns that
efforts to reduce machine resource consumption
must be carefully managed, so as not to conflict
with other automatic data processing (ADP) man-
agement objectives. (See ch. 3.)

The roles of agencies include (1) Government-
wide roles for the General Services Administra-
tion (GSA), the Commerce Department, and the Of-
fice of Management and Budget (OMB), specified
in the Brooks Act (Public Law 89-306), (2) the
augmented role of OMB specified in the Paperwork
Reduction Act (Public Law 96-511), (3) the man-
agement responsibilities of Federal-agencies
specified in OMB Circular A-71, and (4) GAO con-
cern with ADP management in its role ,of aiding
the Congress. In particular, the Institute for
Computer Science and Technology, Department of
Commerce, has the mission of providing Federal
agenciqs with ADP technological advisory serv-
ices. In this review, GAO combined tests of
its own, results reported by other agencies,
discussions with experts, and review of current
literature to review the management, economics,
potential benefits, and applicability of tech-
niques to reduce the machine resources consumed
by COBOL applications.

Tear Sheet

i

AFMD-82-4
Ai’RIL l,lQ82

THE COMPUTER RESOURCES COBOL
APPLICATION8 CONSUME CAN
BE RBDEED SIGNIFICANTLY

Significant benefits have been achieved at some
Federal installations by reducing the machine
resources consumed by COBOL applications. For
example, the Department of Housing and Urban
Development improved five applications and, in
the first year done, recovered computer time
valued at $83,400 in return for a $19,000 cost
of doing the work --about a 4 to 1 return. They
estimated that the improved applications will
run about 5 years, which would accumulate a

i
:

savings of about $400,000--about a 20 to 1 pay-/
back. (See p+ 9.) While such returns cannot
be realized from all COBOL applications (see

i

ch, 3) we feel that they show a significant PO-~
tential for savings. Many other installations,
however, have done little or nothing in this
area.

The National Bureau of Standards (NBS) has not
published specific guid’ance on the effective and
efficient use of COBOL for applications, even
though it has a technical guidance mission. The
benefits of such work can be measured and verir
fled, and such work can be done on any brand of
computer using COBOL. A systematic method and:
the use of automated tools can increase the pap-
off. COBOL applications can also be newly devsl-
oped with deliberate attention to using machink
resources efficiently. If properly managed,
both types of efforts can have an excellent pa;‘y-
off. In particular, we feel that training pro-
grammers to write new programs better has a
large potential for improving COBOL applications.

EFFORTS TO REDUCE COMPUTER RESOURCE
CONSUMPTION ARE NOT ALWAYS APPROPRIATE
mMU8T BE CAREFULLY CONSIDERED

While significant benefits can be achieved by
modifying COBOL applications to reduce their
machine resource consumption, such work must be
considered in light of other ADP management ob-
jectives. For example, satisfying users’ appli-
cation needs may take precedence over cost re:-
duction on the current computers. Work done :to
reduce machine resource consumption should not
violate other software management objectives,
Efforts to reduce COBOL applications’ consump-
tion of machine resources may not require co$-
tinuous effort at individual sites, and some

ii

‘applications are not worth the effort it would
take to reduce their machine costs. Thus, pru-
dent management of this typeof work is needed’
If good results are to be realized.

CONCLUSIONS

Significant computer resources can be recovered”,
for other purposes when work to reduce their cony
sumption by COBOL applicatiafi,s is properly don,,e”.b
The potential aggregate benefit to the Federal
Government is quite large because of the wide-
spread use of COBOL and the long life of many
COBOL programs. More needs to be done to raise
ADP managers@ and users’ concern with the cost
of applications, and to increase programmers’
efficiency and effectiveness in building and
maintaining COBO,L application,,s. Agencies with
Governinent-wide ADP responsibilities should
publish guidpnce on reducing machine resources
consumed bf COBOL applications. GAO be1 ieves
that COBOL’ applications deserve separate treat-
ment because of the extensive Federal use of
COBOL.

The general methods of managing and doing work
to reduce COBOL applications’ consumption of
machine resources can be used on any brand of
computers that implements COBOL.

Work should be done to improve existing applica-
tions only when the value of the recovered re-
sources will significantly exceed the cost of
doing the work and the work will not harm higher
priority objectives. Many of the techniques
used are similar from one brand of computer to
another and, once learned, are relatively easy
to apply. Efficient machine resource usage can *
also be built into new COBOL applications. We
feel that building new applications better of-
fers more potential than reworking old ones.

Efforts to reduce machine resources consumed by
COBOL applications need not violate other soft-
ware management objectives such as maintainabil-
ity, ease of conversion, and adherence to lan-
guage standards.

RECOMMENDATIONS

.The Secretary of Commerce should direct NBS to
publish guidance on the effective and efficient
use of COBOL for applications. GAO believes the
guidance should include examples taken from real

Tear Sheet

iii

life applications and that a possible starting *
point would be to uee a table of contents similar
to that of the already published USING ANSI
FORTHAN lJ and the material in GAmrovLsional
23TGznTst (app. I). GAO also believes that GSA’s
Office of Software Development and the Federal
Computer Performance Evaluation and Simulation
Center (FEDSIM) could work with NBS in construct-
ing such guidance.

Heads of Federal agencies should require periodic
review of the machine resource consumption of
COBOL applications at their installations, and,
where appropriate, require action to reduce the
consumption of the expensive applications.

AGENCY COMMENTS

GAO asked for comments from the Department of
Commerce, GSA, and FEDSIM. They all furnished
comments, which are included verbatim in this
report as appendix IV. The sites GAO visited
were all allowed to review and discuss summaries
soon after the visits.

GSA (1) said its Office of Software Development
would follow GAO’s recommendation to work with
NBS in publishing guidance on the effective and
efficient use of COBOL, (2) suggested further
emphasis on testing, and (3) pointed to a docu-
ment of its own on software improvement. These’
comments resulted in increased coverage of test;
ing in GAO’s provisional checklist and the addi-
tion of GSA’s document to the list of referenceis.
(See pp. 66-68.)

NBS stated that this report is a worthwhile at:
tempt to focus on the need to pays careful and

’ continuous attention at the ADP installation
level to the efficiency of application software.
NBS did not, however, concur with GAO’s recom-
mendation that it publish guidance on the ef-
fective and efficient use of COBOL for applica-
tions. (See p, 63.) GAO believes that specific
guidance on COBOL is worthwhile because of the
extensive Federal use of COBOL and that GSA may
publish the guidance if NBS does not.

FEDSIM had no comment on the substance of the
draft report but asked that GAO clarify that the
person spoken to at FEDSIM did not express a
FEDSIM position. (See p. 69.)

lJNBS Handbook 131.

Contentg

DIGEST

CHAPTER

Page

i

1

2

3

INTRODUCTION

Federal use of computers and software
is extensive

Types of computer software
COBOL is the most widespread Federal

programming language for business
applications

Machine resource consumption of
operating COBOL applications
depends on how they are written
and on their environment

Roles of various agencies
Objectives, scope, and methodology

SIGNIFICANT BENEFITS CAN BE ACHIEVED BY
REDUCING MACHINE RESOURCES CONSUMED BY
COBOL APPLICATIONS

Some Federal installations have achieved
significant benefits by optimizing COBOL
applications to reduce machine resource
consumption

Some Federal installations have done
little or nothing to reduce the
machine costs of their applications

The benefits can, be measured and
verified

A systematic approach helps improvement
efforts

Benefits are potentially widespread and
available on any brand of computer
that has COBOL

Automated tools can help improvement
efforts

Applications can be developed to
deliberately require less machine
resources

EFFORTS TO REDUCE MACHINE RESOURCES USED
BY COBOL APPLICATIONS ARE NOT ALWAYS
APPROPRIATE AND MUST BE CAREFULLY CONSIDEREb

Other ADP management objectives may
have higher priority than attempts to
reduce machine resource consumption

1

1
1

4

5

6"

8

8

12

13

14

15

16

18

19

19

APPENDIX

I

II

III

IV

hDP
COBOL
CPU
FEDSIM

GSA
HUD
NBS
OMB
USACSC
USAMSSA

Work done to reduce machine costs
should not violate other software
management objectives

Continual efforts to reduce COBOL
applications' machine resource
consumption may not be cost
effective

Conclusions, recotiendations, and
agency comments

Provisional checklist for reducing
the machine resources consumed by
COBOL applications

Summaries of what we found at the
sites visited

List of references

20

22

24

27

46

58

Official Comments from the Department of
Commerce, General Services Administration,
and Federal Computer Performance Evaluation
and Simulation Center 62

ABBREVIATIONS

automatic data processing
Common Business Oriented Language
central processing unit
Federal Computer Performance Evaluation and

Simulation Center
General Services Administration
Housing and Urban Development
National BUr8aU of Standards
Office of Management and Budget
U.S. Army Computer Systems Command
U.S. Army Management Systems Support Agency

CBAPTER 1

INTRODUCTION

Federal use of computers and computer programs is extensive.
In fact, the Federal Government is the world's largest user of
automatic data processing (ADP) resources. COBOL--the Common
Business Oriented Language-- is the most widespread programming
language used for and by the Federal G,overnment. And it is the
optimum use of machine resources for applications whose programs
are written in COBOL that we will be concerned with in this report.

All Federal agencies are involved at some level in the role
of the computer in the Government. The General Services Adminis-
tration (GSA) and the National Bureau of Standards (NBS) have
Government-wide responsibilities, as provided under Public Law
89-306, often called the Brooks Act. The Paperwork Reduction Act
(Public Law 96-511) specifies the Government-wide role of OMB. The
management responsibilities of other Federal agencies are specified
in Office of Management and Budget (OMB) Circular A-71, and we are
concerned with automatic data processing (ADP) management in our
role of aiding the Congress.

FEDERAL USE OF COMPUTERS
AND SOFTWARE IS EXTENSIVE

As the world's largest user of ADP resources, the Federal
Government incurs costs that have been estimated at over $15 bil-
lion per year and which continue to increase. The General Serv-
ices Administration's ADP inventory for fiscal 1980 reported that
the Government owns or leases over 15,100 computers. These com-
puters are used to process a variety of applications ranging from
delivering health and welfare services, to administering social
security and veterans' benefits, to exploring space, to analyzing
and reporting on military matters such as readiness levels.

Computer programs --generally called "software" in the indus-
try--make all these computers run. A computer without prbgrams
is like a phonograph without records--it won't play.

TYPES OF COMPUTER SOFTWARE

Computer software has been defined as the programs that make
the computer run, the data files that those programs process, and
explanatory material--called documentation--that accompan,ies the
programs and files. Often, however, the word "software" is used
to refer only to the programs, which can generally be grouped into
systems programs, utility programs, and applications programs.

Systems programs

Systems programs automate the control of operation of the
computer and auxiliary equipment. They control the running of

1

1 .

utility programs and applications programs , control the allocation
of m achine resources to the programs , and report on the resources
used to run the programs . Systems programs are usually supplied
by the com puter vendor but m ay be obtained from other suppliers.

Utility proqrams

Utility programs aid the tasks of com puter program m ers and
others who work with the com puter. ‘They include language transla-
tors A / and stored routines for very com m on tasks, such #as sorting
data. Utility programs m ay be supplied by the hardware ‘vendor or
independent software firms or m ay be written by the user’s employ-
ees. Software tools are a particular class of utility programs
which aid work done on other com puter programs .

Applications programs

These programs autom ate the tasks of end users. For exam ple,
an applications program of a payroll system is the checkwriting
program which writes checks for employees. The tasks autom ated
for end users are alm ost endless: payroll, billing, and inventory
in the business sector; sim ulations and statistical processing in
the scientific sector; and air, traffic control and satellite track-
ing in the com m and, control, and com m unications sector.

Applications programs have life cycles which can be divided
into a developm ent phase and an operational or production phase.
The developm ent phase consists of defining the requirem ents, de-
signing the application, program m ing, and testing. The objective
of applications software developm ent is to construct com puter pro-
grams that will process the users’ data correctly at as low a cost
as feasible and to docum ent those programs so they can easily be
m odified later if necessary. Software developm ent is a labor-
intensive, error-prone process. E rrors can be m ade both in decid-
ing what the programs should do and in constructing them to do it.

The operational phase begins when the application produces
its first user output. The phase includes:

--M aintenance. Work done on the programs and/or their docu-
m entation after they are in production to correc8t errors
and omissions. M any people use the term “m aintenance” to
include the work we call “m odification” below.

1

--M odif ication. Work done to m ake an existing system accom -
plish additional user requirem ents above and beyond those
originally intended.

& /Language translators are com pilers and interpreters that trans-
form the statem ents of program m ing languages writtenby hum ans
into internal m achine codes which directly control com puters.

2

--Performance improvement. Work done on operational applica-
Gns to make them consume fewer resources in operation.
It is also called optimization.

--Conversion. Work done to make programs run on a computer
other than the one for which they were originally written.
This work may be done during the-operational phase of the
life of applications software.

The work done on programs and documentation during their op-
erational phase can account for up to 70 percent of total life
cycle costs and consume most of an organization’s computerpro-
gramming labor. Experience has shown that continual changes to
computer programs have often been necessary to (1) correcthidden
errors, (2) add new user functions because of legal, admintstra-
tive, or technical changes, and (3) reduce the machine resources
they consume. The objectives of software maintenance and modifi-
cation are to fix errors as soon as possible and to install needed
user changes correctly with as little effort as feasible.

The objective of performance improvement, or optimization, is
to make changes to applications--programs, their files, and their
environments l/--to reduce the machine resources those applications
consume. TheFe changes are valid only when such reduction will
repay its own cost without introducing errors into the logic that
processes the user’s needs and without undue conflict with other
software management objectives. Optimization may be needed on the
present hardware, for example, to defer the procurement of more
hardware or may be needed after programs have been converted to
new hardware. The latter is reported in,our report on computer
software conversion. 2/

Applications may be developed, maintained, modified, bptimized,
or converted to new hardware by employees of the user’s or$aniza-
tion, or these activities may be done by specialist firms. Pro-
grams may also be bought readymade from firms selling softbare
built to serve many users. In some cases, firms that sell compu-
ters also will sell applications software. *

An illustration

Definitions are not standard in the software field---especially
as to where systems programs end and utility programs begin. How-
ever, an example will illustrate our use of the terms. The

~ &/The program’s environment includes the organization of its files
on stor’age devices and its interfaces with the machine’s operat-
ing system and with other programs.

2,/“Conversion: A Costly Disruptive Process That Must Be Consid-
ered When Buying Computers,” FGMSD-80-35, June 3, 1980.

3

1 I

checkwriting program of a payroll system is an applications program
which printa checks. While the checkwriting program is running,
its operation and its consum ption of and access to com puter re-
sources such as m emory, disk, and tape, are controlled by the super-
visory control m odule of the operating system --a systems program .
The checkwriting program would be written with the aid of utility
programs , including a language translator. Also, the tim ecards
containing the data processed by the checkwriting program m ay have
been presorted for processing by another utility program --the sort/
m erge. The employee m aster records containing such inform ation as
nam e and pay rate will be stored on a storage resourcer such as a
tape.

COBOL IS THE MOST W IDESPREAD
FEDERAL PROGRAMMING LANGUAGE
FOR BUSINESS APPLICATIONS

The COBOL program m ing language is a Federal, national, and
international standard. It was developed with Departm ent of
Defense (DOD) sponsorship in 1959 and 1960 and has been revised
since.

Federal Inform ation P rocessing S tandards Publication 21-1,
"COBOL," (FIPS PUB 21-l) says:

" * * * the general intent of this publication is to
provide a standard language that can be used in pro-
gram m ing inform ation processing applications except
in circums tances, discussed below, where such use
would not be advantageous."

GSA, which operates the Com piler Testing Center as part of its Of-
fice of Software Developm ent (OSD), is now responsibl4 for ensur-
ing that COBOL com pilers offered to the Governm ent com ply with the
Federal COBOL standard.

In our recent review of software m aintenance, l/,263 of 409
Federal installations responding to a questionnaire-reported COBOL
as their dom inant application language. These 263 haQ an average
inventory of 746 programs , and 170 of the installations reported lu
they had over 100 COBOL programs in production. The 263 installa-
tions said that their COBOL programs last an average of 5.4 years.
These figures were significantly hipher than those reported for
FORTRAN, 2/ the second m ost com m only reported language. FORTRAN
is used a?? 212 installations for an average of 260 programs that
last an average of 4.8 years.

L/"Federal Agencies' M aintenance of Com puter P rograms : Expensive
and Underm anaged," AFMD-81-25, Feb. 26, 1981.

z/Form ula T ranslator, a language developed for scientific and
engineering applications.

4

MACHINE RESOURCE CONSUMPTION OF
OPERATING COBOL APPLICATIONS
DEPENDS ON HOW THEY ARE WRITTEN
AND ON THEIR ENVIRONMENT

A COBOL application includes the COBOL program or programs,
the files they process, and the environment in which the programs
must operate and the files must be kept.

In writing COBOL programs, selecting the organization of the
files they will process, and selecting other environmentai factors,
a programmer has many alternatives, many combinations of which will
yield the same answers for the user. l/ If better methods are
chosen for writing the programs and aTranging their interActions
with their environment, the application will consume fewer machine
resources in operation.

ROLES OF VARIOUS AGENCIES

The basic law governing Federal ADP management is the Brooks
Act, Public Law 89-306. Under this act, the General Services Ad-
ministration is responsible for procuring and maintaining Federal
ADP resources. GSA receives technical advice from the Secretary
of Commerce, primarily through the National Bureau of Standards,
and both of these agencies get fiscal and policy guidance'from the
Office of Management and Budget. The role of OMB was further speci-
fied in the Paperwork Reduction Act (Public Law 96-511) which says
that the Federal automatic data processing and telecommunications
functions of the Director of OMB shall include developing and im-
plementing policies, principles, standards, and guidelines for ADP
and telecommunications functions of the Federal Governmeni. NBS
is responsible for providing scientific and technological advisory
services to Federal agencies, for developing Federal Information
Processing Standards, and for publishing guidance. The Fiederal
Computer Performance Evaluation and Simulation Center (FEDSIM) was
established to develop techniques for analyzing ADP systems for
Federal agencies to improve utilization and-,performance.

In addition, each Federal agency has certain respons~,ibilities
for managing its own ADP resources. OMB Circular A-71, published
in March 1965 by the Bureau of the Budget (now the Office of Man-
agement and Budget), states that the heads of all executive depart-
ments and establishments are responsible for the administration
and management of their automatic data processing activities.

In our role of aiding the Congress, we are concerned with the
management of Federal ADP and with computer software as an expen-
sive part of Federal ADP. Our past reports to the Congress have

&/For example, calculate the pa? correctly and print the correct
amount on the paychecks.

I *r

recommended improvements in ADP management both on a Government-
wide basis and to specific agencies. This COBOL review refl.ects
our concern with effective and efficient Federal use of computer
software and hardware resources.

OBJECTIVES, SCOPE, AND METHODOLOGY

In this review, we wanted to explore the management implica-
tions and economics of reducing machine resources consumed by COBOL
applications and their applicability to different brand8 of compu-
ters, as well as specific tools and techniques for doing the work.

To cover these topics, our review included:

--Experiments of our own at five Federal sites to obtain data
on what improvements could be achieved with various tech-
niques and on the applicability of a general approach in
different environments. (See app. II.)

--Review of the consumption of machine resources by COBOL
programs at installations visited to verify the commonly
reported phenomenon that a few programs consume a dispro-
portionately large amount of'total machine resources.

--Visits to organizations with continual optimization efforts
(app. II, p* 53) to (1) get their views on the r(elative im-
portance of COBOL optimization compared to other1 ADP man-
agement objectives and the appropriate management of COBOL
optimization, (2) examine their documentation of benefits
achieved, and,(3) get an idea of the benefits that can be
achieved with regular efforts of this type. ~

--Use of our earlier work and published results to augment
our current experiments. (See app. III.)

--Discussion of the subject with organizations with a
Government-wide interest in it, such as the GSAlCompiler
Testing Center.

--A limited experiment with a commercially available program,
which we did to obtain our own data on automatiq optimiza-
tion--passing the machine code produced by the oompiler
through another program, called an optimizer, which elimi-
nates unnecessary machine code and which reduces the size
and increases the speed of the program.

--Examination of the current literature to get examples of
reported benefits, to get examples of methods, and to
assemble a bibliography for others' use. (See ispp. III.)

Our review was performed in accordance with GAO's1 current
"Standards for Audit of Governmental Organizations, Programs, Ac-
tivities, and Functions." We made this review because'we had

6

indications--including an example reported in our software tech-
nology report l/ --that optimization work can still yield worthwhile
savings despits the fact that computing hardware is now'cheaper
and thus hardware costs do not have the overriding importance they
once did.

We limited the review to COBOL because COBOL is the primary
language used for the Government's high-volume business applica-
tions and because we believed that optimization would pay off most
with a widely used language.

A list of the sites we visited, with summaries of what we
found at each site, is included in appendix II. Officials at each
site reviewed and commented on our summary of work done attheir
site soon after we finished our work.

~ I-/"Wider Use of Better Computer Software Technology Can Improve
Management Control and,Reduce Costs," FGMSD-80-38, Apr. 29,
1980.

I 7

CHAPTER 2

SIGNIFICANT BENEFITS CAN BE ACHIEVED BY

REDUCING MACHINE RESOURCES CONSUMED BY

COBOL APPLICATIONS

Significant benefits have been achieved at some Federal in-
stallations by modifying COBOL applications to reduce the machine
resources they consume4 Many other installations, however, have
done little or nothing in this area. The benefits of s~uch work
can be measured and verified. A systematic method and fautomated
tools can increase the payoff. Work can be done to reduce the
machine costs of COBOL applications on any brand of computer using
COBOL, and new COBOL applications can be developed with deliberate
attention to using machine resources more efficiently.

These recovered resources can result in significant savings
and will sometimes defer the need to procure new computer equip-
ment.

SOME FEDERAL INSTALLATIONS HAVE '
ACHIEVED SIGNIFICANT BENEFITS BY
OPTIMIZING COBOL APPLICATIONS TO
REDUCE MACHINE RESOURCE CONSUMPTION

The benefits from optimization may be divided into three
categories. The f,iyst is the recovery of resources which can be
applied to other uses. This work can recover CPU (central proc-
essing unit) time, l/ file storage space, and the likep which can
then be used for other applications. The Department of Housing
and Urban Development (HUD), which has an ongoing effort, reported
significant resource recovery. Figure 1 on the next p$ge shows
the results of work done by HUD on five application systems.

These five systems were the:

--Home Mortgage Distributive Shares System.
--Acquired Home Property Phase II System.
--Critical Path Processing System.
--Premium Liquidation and Control System.
--Small Homes System.

The first four were documented in HUD internal memos and in
a June 1980 paper written by a member of the HUD Standards and

--

&/CPU time is the time the central processing unit spends exe-
cuting instructions.

8

Figure 1

System

Percent
CPU th
IXt?dUCed

82

30

19

45

9

PePpi3K
equivalent

dollar value
of CPU saved

(note a)

$37,000

4,400

9,000

45,000

7,000

Net dollar
Total equivalent

cost to put of recovered
optimized CPU time

system into savings
production first year

$5,500 $31,500 $442,500

2,400 2,000 '15,200

900 8,100 35,100

1,200 43,800 178,800

9,000 -2,000

Approjcimate
net dollar
equikalent

of rebovered
CPU tiJne

during! minimum
expec~ted life

19,000

$490,600

Summary

For the five systems:

First-year dollar equivalent of recovered CPU time = $83,400 (net)

Approximate dollar equivalent of recovered CPU time = $390,600' (net)
(based on 4-year minimum life)

Costs to put the five optimized systems into production = $19,000

dAt HUD rate of $350 per CPU hour. We did not verify this figure but
believe it is reasonable.

‘I

Quality Control staff. 1/ The fifth, and m ost recent,'was docu-
m ented in an internal mzmo and discussed with us.

To estim ate net savings from resource recovery, we augm ented
the HUD docum entation with interviews of the HUD S tandards and
Quality Control staff. For exam ple, we needed to estim ate not
only what the owners of the applications spent to put the opti-
m ized programs into production but what the HUD S tandards and
Quality Control staff spent as well. We were conservative in our
calculations. For exam ple, we used m inim um instead of m ost prob-
able expected life so that, if anything, the savings are under-
stated.

The HUD representatives stated, and we agree, that not all
systems will repay optim ization efforts quickly and that not all
expensive-to-operate systems are inefficient. As an exam ple, the
fifth system optim ized did not repay the effort until the second
year after the optim ization.

During this review, our work produced two noteworthy improve-
m ents. First, with the cooperation of the Defense M ap ing Agency,
we m odified a standard print routine, which is copied I nto m any
of the agency's COBOL programs , 2/ to improve its efficiency. We
dem onstrated a cost savings of $1,357 --using the improved print
routine in one program --
the old comzer.

for the tim e that program would be run on
Later, after the agency had converted its pro-

grams to a new com puter, we found that the improved print routine
will be used in about 100 programs .

The other improvem ent cam e with the cooperation of the U.S.
A rmy M anagem ent Systems Support Agency (USAMSSA) when we saved re-
sources while correcting an operational problem . A program that
m anipulated three indexed disk files had about a 7-l/2 hour
elapsed tim e to com plete processing. During this long period, sys-
tem breakdowns often caused the output to be lost, requiring re-
runs. Users com plained that they were not getting their output
on tim e. By m erely reorganizing the files, we cut in half both
the elapsed tim e and CPU tim e consum ed. Changes to th'e COBOL
statem ents of the program (source code) cut them in half again.
Thus, these changes --accom plished with a total of about 1 staff-
day's work --cut CPU and elapsed tim es to one-fourth their original
values. Also, the output is lost m uch less often and the users
get their output on tim e m uch m ore often. The changes will also
save about $3,500 in CPU tim e the first year the improved version
is operated. (See app. II.)

_1/"A P rocedure to Review and Improve the Operation E fficiency of
P roduction Systems ," by Robert A . Grossm an, C.D.P., P roceedings
of the 19th Annual ACM/NBS Symposium, June 19, 1980.

2/ By m eans of the COBOL COPY verb.

10

"All three programs we selected for this experiment
were real applications programs * * **

'"The pro)eeted first-year savings due to our
experiment totaled about $34,000 at the two in-
stallations. We spent about 4 staff weeks on the
experiments. We also demonstrato'ld that software
tools developed at one installation can be used at
another with high potential for cost-savings--
avoiding duplicate development of tools--and with
limited resourcesr and that the techniques which
the tools aid can be applied at many installations."

The other two benefits that can be derived from tuning COBOL
applications are a reduction in operational problems and i~mprove-
ments in software quality. In the first case, a new computer may
be found to be filled unexpectedly by old applications which were
converted without regard to the new system's capabilities. (We
reported such a finding in our software conversion report. 2/)
Work may then be needed to recover capacity. Also, on this-project
we corrected an operational problem at USAMSSA. (See app. II.) In
the second ease, tuning applications can simplify coding, eliminate
unnecessary operations, and remove functional errors discovered
during analysis or testing.

A published paper 3-/ states:

"Application program optimization is an area often
ignored by computer measurement personnel, who prefer to
address the problem of tuning and optimizing the opedating
system software, finding it easier to measure and control.
Yet this area offers substantial benefits to the computer
facility as well as to the application. The advantage to
the user is obvious, since an optimized program will'cost
less to run. However, on a well-tuned system, operating
system software may be executing 30% of the time witd the
remainder of the CPU cycles in use by the application
software. Thus, even the most finely-tuned operating

(L/"Wider Use of Better Computer Software Technology Can Improve
Management Control and Reduce Costs," FGMSD-80-38, Apr. 29,
1980, pa 26.

Z!/"Conversion: A Costly, Disruptive Process That Must Be'Con-
sidered When Buying Computers," FGMSD-80-35, June 1980,'~~. 12,
42-43, 48-49.

~ z/Budney, J., "COBOL Optimization Techniques,"
I Annual Technical Symposium ACM/NBS, Gaithersburg,
I 1978, p. 221.

11

system may be degraded by inefficient applications.!, Any
improvement Jn the efficiency of software which comprises
70 percent of a system’s workload offers real savings to
allen

Efforts to improve existing applications must select applications
that are expensive or that are operational problems--so that the
work will be worth doing. (See p. 14.1

SOME FEDERAL INSTALLATIONS HAVE DONE,
LITTLE OR NOThING TO REDUCE THE
MACHINE COSTS OF THEIR APPLICATIONS

Little done at some sites

Despite the potential for recovered capacity and operational
improvement, we found that some installations have done little or
nothing to examine the machine resource consumption of their COBOL
applications. Several reasons were cited for this situation at
sites we visited and in available literature. Among tho’se rea-
sons were:

--Cost of machine resources is not the users’ chief, concern
and thus is not what the ADP shop is pressured about. At
USAMSSA, the Director said he has an enormous backlog of
user functional requests, no user concern for machine
costs, and no labor to devote to optimization.

--Programmers do not perceive pressure from managem,ent, and
are not self-motivated, about the costs of operating their
programs. An NBS official said he felt that most COBOL
programmers have the attitude that getting the pr~ogram to
work any way they can is satisfactory.

--Many COBOL programmers are not familiar with advanced fea-
tures of and usage techniques for the COBOL language. The
head of the GSA compiler testing center said he felt that
most COBOL programmers are familiarwith, at best, one-
fourth of the features of the language and know little
about how to use the language effectively and efficiently.

A published article l./ summed up the situation:

I * * most programmers have little appreciation for the
performance aspects of the programs they are writing.
There are several reasons for this: (1) the programmers
have typically never had; any comprehensive training in the
performance considerations of the programs; (2) the job
reward system usually does not give an incentive for
writing programs that give better performance; (3),man-
agement often has little or no idea as to what timeframe

L/Jalics, Paul, “Gaining An Awareness of the Performance of COBOL
Programs,” Computer Measurement Group IX, 1978, p. 61,

12

is reasonable for the execution of a given program; (4)
the programmers are usually working with a higher-level
programming language such as COBOL and are therefore
almost completely shielded from the realities of the
sequence of machine instructions that must be executed
and the actual data types that must be manipulated: and
finally (5) the language and compiler manuals are seldom
found to be treasure houses of useful information and
hints on how to get the best performance on the partic-
ular compiler.”

Awareness and guidance found lacking
at some sites

At the sites we visited, programmers’ awareness and ADP mana-
gers I awareness of this area varied greatly. Some sites--such as
HUD and the U.S. Army Computer Systems Command (USACSC)--made con-
tinual efforts to evaluate alternatives in new applications, to
monitor costs of existing applications, to do cost reduction work
where indicated, and to educate programmers in efficient techniques.
Other sites had done little or nothing. Lack of knowledgeable
staff and lack of authoritative guidance were cited, as well as

‘general pressure from more important work. (See app. II.)

We discussed COBOL performance improvement with experts at
GSA’s Office of Software Development, FEDSIM, and at the Institute
of Computer Sciences and Technology of the National Bureau of
Standards. At the Office of Software Development and at FEDSIM,
we were told that Government-wide guidance is needed to increase
programmers’ awareness of costs and their knowledge of techniques,
and that both organizations would be willing to work with NBS on
such guidance.

The NBS officials we spoke with indicated that many8CdBOL
programmers are ignorant of techniques, get little formal training,
and have little concern for machine costs. Concerning Government-
wide guidance, the officials said that while NBS does not publish
specific guidance on using COBOL for applications, general’prin-
ciples in some of their present publications apply to COBOL as well
as to other languages. The officials also said it is not clear
that guidance published by NBS would be read or followed any more
than commercially published guidance. Our representative pointed
out to the NBS representatives that NBS had already published
specific guidance on using the FORTRAN language and if that was
worthwhile, surely COBOL guidance would be also.

ITHE mmwrs CAN BE MEASURED AND VERIFIED
I

Measurement and verification of benefits includes identifying
applications that are now expensive to operate, recording labor
and machine costs needed to prepare test data, planning and making
changes to programs and files, making comparison tests of the old
to the new version(s), and recording costs to change the documen-
tation and turn the new version over to production. The benefits
can be measured in terms of reduced machine resources and-;for

I 13

~ ,‘: ”
,,, ,,

,g” .:_ ‘..

comparison to the cost of making the improvements--sxpr&ssed in
dollar equivalents at local charge rates. Whether the machine
resource reduction is truly a “cost savings” is more difficult to
prove. For example, if the installation is committed to a pro-
curement contract, its current payments for the computer will be
largely fixed; running the programs faster will not reduce the
money paid to the computer vendor.

However, even in the fixed procurement situation, expressing
in terms of dollars the reduced resdurces needed will enable judg-
ments of whether the tuning labor expended was justified. Also
with fixed procurement, reducing the machine resources needed for
the present applications will free up resources for other or later
applications, thus allowing the computer to be used longer before
its capacity is filled and a larger and/or more expensive replace-
ment is needed.

A SYSTEMATIC APPROACH HELPS
IMPROVEMENT EFFORTS

The advantages of using a systematic, well-documented method
for this work include the following:

--Wasting time on applications that will not repay the effort
can be avoided.

--Potential, worthwhile candidates can be quickly identified.

--Benefits achieved can be identified and quantified.

--Users will be more easily convinced that their improved ap-
plications will still get the right answers; for example,
print the correct amount on the paycheck.

--The methods used can be recorded for later use b’y others.

The general procedure to reduce the machine resources con-
sumption of an installation’s inventory of COBOL appliciations
is as follows.

=--Identify large consumers. First, identify those~ applica-
tions that consume significant resources. Then ,, for the
expensive applications, identify individual prog~rams, files,
or interactions which consume significant resour’ces.

--Identify changes to programs, files, or interactions that
might yield improvements, make those changes to ‘working
copies, and test them.

--If the changes do indeed reduce the consumption of machine
resources, verify tnat the users’ answers have not been
changed.

14

--Turn the improved version over to production. After
several production cycles, verify the savings.

--Throughout the process use appropriate tools to reduce
the labor of analysis and testing.

--If the cost to make the improvement would not be paid for
by saved machine resources, do not implement the change.

The general procedure is discussed in more detail in appendix I,
the provisional checklist.

BENEFITS ARE POTENTIALLY WIDESPREAD AND
AVAILABLE ON ANY BRAND OF COMPUTER THAT
HAS COBOL

Many manufacturers of medium- and large-scale computers offer
a COBOL language translator. Some minicomputers and microcompu-
ters are also offered with COBOL. As we pointed out earlier, COBOL
is a widely used Federal standard computer programming language.

Five of our case studies on the current review show the fol-
~ lowing percentages of production workload in COBOL:

Estimated percentage
of production

Site Brand of computef in COBpL

HUD UNIVAC 97
NARDAC (note a) UN I VAC 85
Corps of Engineers Honeywell 90
Bureau of Mines Burroughs 82
USAMSSA IBM 60

s/Navy Regional Data Automation Command.

The fact that COBOL applications are significant in the pro-
duction inventories of many Federal installations, and that long
lives are often reported for COBOL applications, indicate: the po-
tential for significant savings. Even if an application’s machine
resource needs are reduced only slightly, the total savings will
mount up if the program is run many times for several years.

Our own experiments, the sites we visited, and assorted lit-
erature showed us that the general systematic approach a@ many
specific techniques can be applied to COBOL applications regard-
less of the brand of computer involved. Also, the GSA compiler
test center director, representatives of NBS, and a FEDSIM repre-
sentative agreed that this general applicability is true.

15

We performed optimization work at sites that were using ;BM,
Honeywell, UNIVAC, and Burroughs computers. We were able to dem-
onstrate potential for significant reductions in computer resources
by following the general techniques described above.

It is true that some optimization techniques involve the use
of vendor-unique extensions to the standard COBOL language or other
features unique to a particular vendor’s hardware or operating sys-
tem. Such techniques, however, should be used only for expensive
applications where the eventual conversion cost increase due to
their use is massively overbalanced by savings, and those savings
should be well documented. Because of their impact on future con-
versions, such techniques should be rigidly excluded from applica-
tions that cost little to operate.

The head of the GSA compiler testing center and a FEDSIM
representative gave us some thoughts on the appropriate use of
vendor extensions and the kinds to use. (See app. II, part C.)

AUTOMATED TOOLS CAN HELP IMPROVEMENT EFFORTS

Automated tools are computer programs that can help efforts
to reduce COBOL machine costs by reducing the labor cost needed
to achieve the improvement. Automated tools for this purpose can
be divided into two general categories --analysis aids and automa-
tic optimizers.

Analysis aids include:

--Computer resource accounting aids which identify jobs by
resource consumption. Some subdivide the information to
the individual program level.

--System analyzers which can trace the flow of data and the
consumption of resources through a group of programs making
up an application and which can identify which programs
in the group consume the most resources.

--Individual program analyzers which will quantify the be-
havior of individual programs by showing how many times
parts of the program are caused to execute by a given data
set, or how much time is spent in each part of the program,
or both.

Analysis aids can provide useful information for identifying
and tuning expensive applications. They may summarize information
that would otherwise be laboriously gathered manually--such as a
list of programs sorted in order of CPU time consumed. They may
also collect information that is difficult or impossible to get
manually-- such as the percentage of a program’s total CPU time
that is spent in each part of the program. Better information
from analysis aids reduces the labor cost of analysis and reduces
false starts at improvement. Some of the information, such as

I 16

execution counts, may also locate logical errors. Analysis aids
may be provided as compiler options or as separate processors.

Automatic optimizers include options built into compilers and
separate processors, which act after the compiler. Automatic op-
timizers work directly on the object module l/ produced by compi-
lation and remove unneeded machine instructi%s and improve flow
of control, thereby reducing the size of the object module and in-
creasing the speed of the load module 2/ that will be link edited 3/
from it. Automatic optimization may bz done as an additional phasz
of the compiler, or implemented as a separate processor which proc-
esses the object module after the compiler.

We have made four general observations that we believe’apply
to automated tools of either kind.

--Sources of tools: Use what is available. If at all pos-
sible, use tools or aids that already exist in the system
of interest. If the desired aids do not exist on the com-
puter of interest, search for tools that exist at other
installations with the same type of computer and try to
share a copy. If this fails, consider--with appropriate
planning and testing-- an available off-the-shelf software
product aid. Tools should not be custom-built unless (1)
demonstrated improvement potential is greater than the es-
timated cost to build the tool, (2) a plan for their: use
exists which includes a postinstallation audit to establish
whether building the tool was worthwhile, and (3) serious
research shows that there is no alternative.

--Plan for use: Do not acquire tools haphazardly with no
plan for their use. USAMSSA bought COTUNE II--an an:alysis
aid --several ‘years before our visit and had used it very
little.

--Availability of tools, experienced analysts, and inf:orma-
tion: Availability of these are much greater for some
brands of computers than for others. j*

KlJObject module is the output of the compiler, which translates
the COBOL source statements written by the programmer to an
intermediate machine-language object module.

/ i/Load module is the output of the linkage editor which links to-
I gether the object code produced by the compiler and other pro-

grams and resolves references. It is ready for execution.

i/Link editing: The activity of the linkage editor in producing
a load module. The linkage editor is a utility program which
prepares an object module for execution by completing needed
information.

17

--Whether commercially available tools are on the GSA schedule:
GSA negotiates annual schedule contracts for commercially
available software products, some of which are optimization
tools. Federal installations should check the GSA schedule
because a product can be quicker and easier to install if it
is already on the GSA schedule.

The provisional checklist in appendix I contains more information
on these points.

APPLICATIONS CAN BE DEVELOPED
TO DELIBERATELY REQUIRE
LESS MACHINE RESOURCES

Many of the same techniques used to reduce machine costs of
applications after they have been running in production can be used
when applications are first built. This would (1) yield the bene-
fits earlier, (2) reduce the cost of getting the beneflits because
later extra testing would be avoided, and (3) improve the chances
of discovering logic errors before the application is delivered to
production. The last may provide users with more reliable as well
as cheaper-to-operate software.

Our observations at sites, our discussions with G!SA and
FEDSIM, our earlier software technology 1
reports, 2J and NBS Special Publication ?!

and softwarie maintenance
00-11 “Comput:ler Software

Management,’ all support the value of doing a thorough~ job early
in the program development process.

We feel that teaching programmers to
better offers a larg.er overall potential for
plications than does the retrofitting of
to existing applications.

lJFGMSD-80-38, op, cit., p. 17.

ZZ/AFMD-81-25, op. cit., pp. 16-21.

18

CHAPTER 3

EFFORTS TO REDUCE MACHINE RESOURCES

USED BY COBOL APPLICATIONS ARE NOT ALWAYS APPROPRIATE

AND MUST BE CAREFULLY CONSIDERED

The opportunities discussed in the previous chapier for re-
ducing machine costs of COBOL applications are not always achiev-
able. In some situations, it may not be practical or desirable
to undertake such efforts; management must look at its own situa-
tion case by case. Some of the specific constraints identified
during our review, and discussed in greater detail in this chapter,
are as follows:

--Other objectives may have higher priorities.

--Efforts to reduce machine resource consumption may violate
other objectives.

--Continual efforts to reduce machine resource consumption may
not be cost effective.

OTHER ADP MANAGEMENT OBJECTIVES MAY
TTO

REDUCE MACHINE: RESOURCE CONSUMPTION

In applying its resources, ADP management must meet many other
demands which can have higher priority than reducing applications'
machine costs. These other demands might include:

--Satisfying user needs. User requests for new applications,
or for changes'to existing applications, may have higher
priority and take up all the programmer/analyst labor that
is available. The director of USAMSSA told us that his
large backlog of user requests has prevented work' to reduce
machine costs of applications. However, even in 'this case,
an automatic optimizer can help, because it requires no
analyst labor after installation.

--Anticipating competitive procurement of new hardware or a
new timesharing service. This may require software conver-
sion to a different brand of hardware and can discourage
improvement efforts on the current hardware. Some types
of applications improvements indeed will not transfer to
other hardware; others, however, will. At the Defense
Mapping Agency, we found that improvements in the stand-
ard print routine that is copied into many of the!ir COBOL
programs would not only effect significant improvements
on their present computer, but since the improvements were
at the COBOL source level, would transfer to any make of
computer that includes COBOL.

19

WORK DONE TO REDUCE MACHINE COSTS
SHOULD NOT VIOLATE OTti-m
MANAGEMENT OBJECTIVES

While reducing resource consumption is worthwhile, other con-
siderations besides machine costs are also very important in soft-
ware management, and these other considerations should not be vio-
lated in the name of saving resources. These considerations
include:

--Making the software do what the user wants, and do it cor-
rectly. NBS Special Publication 500-11 states:

“Design and program for quality before performanoe.

“Before programmers make any effort to tune their
modules for improved performance, all quality character-
istics required should be realized. Necessary comments
and program arrangements for clarity, maintainability,
modifiability, generality, and all required functions
should be completed and confirmed in reviews.” 1;/

--Constructing software with defenses against problem situa-
tions. Applications software should be constructed in such
a manner that problem situations, such as attempts to input
unacceptable data, will not cause results that ar~e detri-
mental or astonishing to the user. Programs should include
routine checks and recovery possibilities that ar;e “for-
giving” of common user and data errors. 2/ As an NBS offi-
cial pointed out, (see app. II) such roufine checks will
add to the pure machine costs of running programs but are
needed to reduce the chances of disastrous effects on user
tasks. Attempts to reduce machine costs should not discard
a reasonable level of defense in the application+

--Preserving maintainability of the software: A sizeable
application often runs long enough in production ,status
that user-requested changes --called maintenance changes--
are made to the programs by persons other than their ori-
ginal authors. On our software maintenance questionnaire,
263 installations reported that their COBOL programs have
an average life of 5.4 years. 3/ We found that significant

m--m---
L/NBS Special Publication 500-11, “Computer Software Management:

A Primer for Project Management and Quality Control,” p. 31.

z/NBS 500-11, op. cit., p. 14.

i/“Federal Agencies’ Maintenance of Computer Programs Is Expensive
and Undermanaged,” AFMD-81-25, Feb. 26, 1981, p. 44.

reductions in machine costs of COBOL applications can be
made without affecting maintainability of the programs;
indeed, some changes simplify programs and improve main-
tainability. Examples included our work with the print
routine at the Defense Mapping Agency and at USAMSSAr and
were confirmed by discussions with GSA.

--Following structured programming principles in constructing
and maintaining programs. Stru#ctured programming makes a
computer program easier to understand by arranging the pro-
cedural statements of a program l/ hierarchically, using
meaningful names for variables t’Fie program manipula~tes, us-
ing meaningful embedded comments in the program, and adher-
ing to certain formatting and indentation conventioins.
Changes made to computer programs to reduce their miachine
costs should not, and need not, violate the princip~les of
structured programming.

--Preserving adherence to the COBOL programming langu,age
standard. A Federal standard for COBOL is maintained by
NBS so that programs will be more nearly the same o,n dif-
ferent brands of computers, with the objective that conver-
sion costs and programmer training will be reduced. 2/
Vendors’ COBOL compilers include features defined in-the
standard (most of the language) as well as additional
“custom*’ features supplied by the vendor. Those custom
features are commonly called extensions because they extend
the capability of that vendor’s COEOL beyond what can be
done with purely standard COBOL. However, if and when
COBOL programs containing extensions must be converted to
another vendor’s computer, those extensions must be taken
out and standard language substituted. Our conversion re-
port 3J cited an instance where strict adherence to stand-
ard COBOL enabled a much cheaper conversion than other cases
where nonstandard COBOL was present. Yet, in some cases,
use of extensions or other vendor-unique features can sig-
nificantly reduce the day-to-day operating costs o

f
an ap-

plication. Thus, a trade-off should be made: W il there
really be enough immediate resource savings from using ex-
tensions to offset later conversion difficulty cau$ed by
those extensions?

~ &/The procedure division of a COBOL program.

~ z/Federal Information Processing Standards Publication 21-1,
“COBOL. ”

?_/*‘Conversion: A Costly Disruptive Process that Must Be Considered
When Buying Computers,” FGMSD-80-35, June 3, 1980, pp. 22-23.

21

In this study, we found that (1) significa’nt reductions
in the operating costs of COBOL applications ca,n be made
without deviating from the standard, (2) many C,CBOL programs
do not cost enough to operate to justify any de’viation from
the COBOL standard, (3) certain COBOL ldnguage extensions
and other vendor-unique properties will yield s,ignificant
savings and should be used in expensive, long-l’ived appli-
cations, (4) some of those useful extensions can easily be
removed I
mented,

and (5) all use of,,, such extensions shohld be docu-
including resource reductions yielded, so that they

can be easily removed later. These five points~ emerged from
our own experiments, our discussions bith NBS, FEDSIM, and
GSA, and the literature we reviewed.

CONTINUAL EFFORTS TO REDUCE COBOL APPLICATIONS’
ACHm RESOURCE CONSUMPTION MAY NOT

BE COST EPPECTWE

To be worthwhile, this type of work must generate enough re-
duction of resources consumed to offset its own labor tind machine
costs. The people who can analyze existing applications and de-
vise improvements are expensive to hire and should be supported
with automated aids where feasible so that the labor cost of im-
provement efforts will not outweigh the improvements obtained.
In this study, we observed that:

--Improvements seen will reach a point of diminishing returns.
This is true at both the installation level and at the level
of individual COBOL programs. At the installation level,
the first work done to reduce resource consumptfon will
(and should) select the worst applications. Spkctacular
improvements with a good return for resources expended may
be seen on these first, worst applications. Hotrlever, later
work on other applications that are not as bad may not show
nearly as good a return. This phenomenon of diminishing
returns was reported by HUD and the Bureau of M/i.nes, Denver
(see app. II), and we believe1 that it is close1
the “80120 syndrome” observed in resource consu (See
P* 23.)

At the level of individual programs, a similar phenomenon
is seen. The first, most obvious changes to a program, its
files, or its interactions with its environment may, and
often do, yield a far greater resource reduction than other,
less obvious, more difficult-to-make changes. Thus, those
responsible for efforts of this type should “know when to
stop. ll

--In smaller installations, resource reduction efforts may
be part-time or periodic. A small installation’may not be
able to justify continuous full-time staff devoted to this
work. This can be particularly true after an i

e
itial con-

centrated effort to reduce the consumption of t,e worst

22

applications. The Bureau of Mines site in Denver had ex-
perienced just this sort of thing. A highly skilled em-
ployee did such work full-time just before he retired and
reported to management that the worthwhile work was done.
Tha director at that site said that another resouiree reduc-
tion effort would probably be justified in another 2 to 3
years due to new applications and the degradation of current
ones. The branch chief said that changes would eventually
accumulate to the point that another optimization! exercise
would be needed.

V-Large installations, however, can benefit from continuous
effort. Large sites have enough potential benefit to jus-
tify continuous effort of this type, especially if they de-
velop applications that will be run at many sites. Even a
small percentage reduction in resource consumption becomes
worthwhile when it is multiplied by 10 or more sites. The
U.S. Army Computer Systems Command develops softdare for
many Army sites and has a continuous resource reduction ef-
fort, (See app. II.)

--Sporadic operational problems may be corrected in ways that
also reduce resource consumption. Systems peoplei at USAMSSA
asked us to look at a problem for which they did ;not have
time. As reported on page 15, we resolved this problem for
them.

If an application costs so little to operate that improvement
of the application will not offset the cost of making the improve-
ment, then nothing should be done. In this regard, we found that
many applications do not cost much to operate. A very common
phenomenon is that a fraction of the total number of applications
consumes a disproportionately large amount of the machine resources.
This general phenomenon is sometimes referred to as the 80/20 syn-
drome, that is, 80 percent of the resources are consumed by 20 per-
cent of the applications. (This rule, inverted, is also known as
the 20/80 rule. The proportions vary, but the general Phenomenon
is common, A FEDSIM representative said that (1) it istypical
(see app. II, part C), (2) published papers report it, 1/ and (3)
our own analysis at the Defense Mapping Agency and USAM$SA showed
about 70/15 and 77/10 respectively. (See app. II, part'B.)

I This means that in many installations, half or mor& of the
COBOL programs may not consume enough resources to justify any
expenditure of analyst labor to change and retest them to reduce
their resource consumption. (However, such programs can be helped
somewhat by automatic optimization which requires no handwork.)

&/Grossman, "A Procedure to Review and Improve the Operational
Efficiency of Production Syst&ms," Nineteenth Annual'ACM/NBS
Technical Symposium, p. 222.

23

An official of the House Information Systems said that their pro-
grammers normally use automatic optimization on applications before
releasing them to production.

Other circumstances may preclude optimizing applications.
For example, if applications software is soon to be redesigned,
replaced, or upgradsd, efforts to optimize it may be wasted motion.
Also, anticipated conversions to new hardware environments will
discourage tuning on the present hardware. Some types of changes
to reduce resource consumption will not transfer to a different
brand of hardware. However, other types of changes will be better
on any brand of hardware, as we demonstrated at the Defense Mapping
Agency. I

CONCLUSIONS, RECOMMENDATIONS, AND
AGENCY COMMENTS

Conclusions

Significant computer resources can be recovered for other
purposes when work to reduce consumption by COBOL applications is
properly done. The potential aggregate benefit to the Federal
Government is quite large because of the widespread use of COBOL,
the long lives of many COBOL programs, and the fact that !some in-
stallations have done little to reduce resource consumption. More
needs to be done to raise ADP managers' and users' concern with
the cost of applications and to raise programmers' efficiency and
effectiveness in building and maintaining COBOL applications.
Agencies with Government-wide ADP responsibilities should publish
guidance on reducing machine resources consumed by COBOL lapplica-
tions. We believe that COBOL applications deserve separate treat-
ment because of the extensive Federal use of COBOL.

The general methods of managing and doing work to reduce COBOL
applications' consumption of machine resources,can be used by any
agency on any brand of computer that implements COBOL. This work
should be done only when the recovered resources will significantly
repay the cost of doing the work. Many of the techniques used from
one brand of computer to another are similar and, once learned,
relatively easy to apply. Efficient machine resource usage can
be built into new COBOL applications or retrofitted to old ones.

~ Efforts to reduce machine resources consumed by COBOL appli-
cations need not violate other software management objectives such
as maintainability, ease of conversion, and adherence to language
standards.

Recommendations

We recommend that the Secretary of Commerce direct the Na-
tional Bureau of Standards to publish guidance on the effective
and efficient use of COBOL for applications. We believe'that the
guidance should include examples taken from real-life applications.
We also believe that a possible starting point would be to use a

I 24

table of contents similar to that of the already published "Using
ANSI FORTRAN," 1/ and our provisional checklist (app. I'). We also
believe that GSx'a Office of Software Development and FEDSIM could
work with NBS in constructing such guidance.

Heads of Federal agencies should require periodic review of
the machine resource consumption of COBOL applications at their
installations, and, where feasible, require action to reduce the
consumption of the expensive applioations.

Agency comments

We asked for comments from the National Bureau of Standards
of the Department of Commerce, the General Services Administra-
tion, and the Federal Computer Performance Evaluation &d Simula-
tion Center. All three furnished comments which are included
verbatim in this final report as appendix IV. Officials at the
sites we visited were allowed to review and discuss our summaries
soon after we finished our work. We did not ask for comments from
the parent agencies of our experimental sites because our recom-
mendations were not addressed to them.

GSA said that its Office of Software Development would follow
our recommendation to work with NBS in publishing guidance on the
effective and efficient use of COBOL and would also continue its
program of providing further guidance and assistance to agencies
in improving their software. GSA also suggested further emphasis
on testing of the improved software and pointed out a document of
its own that addresses testing. We made minor changes to the re-
port to recognize GSA's concerns.

The National Bureau of Standards officials did not concur
with our recommendation that they publish guidance on the effec-
tive and efficient use of COBOL for applications because they
judge language standards, total system performance, and life cycle
management to be more important. NBS officials said they were
able to publish a FORTRAN handbook only because they found an out-
side expert who was willing to contribute, and concluded that the
language-by-language approach to improving software was not feas-
ible. They also suggested wording changes to our account of our
discussion with members of their staff and suggested that we add
some NBS publications to our reference list.

We believe that specific guidance on COBOL is worthwhile
because of the extensive Federal use of COBOL and that the General
Services Administration may be able to publish the guidance if NBS
does not. While we agree with NBS that language standards, total
system performance and life cycle management are important, we be-
lieve that working-level Federal programmer/analysts need practical
guidance on their primary language. We also recognize the resource

L/NBS Handbook 13i.

25

limitations; however, we believe that assistance and existing docu-
ments are available to reduce the resources needed to publish such
guidance.

Indeed, one of NBS' own recent publications says:

"Use of assembly language programming has been
decreasing and the use of COBOL has been increasing.
It was estimated that over 50 percent of Federal
installations were using COBOL as their principal
programming language in 1979. This number was pre-
dieted to increase to over 60 percent by 1985." IJ

We believe that a programming language that is expected to increase
in use until it becomes the principal language of over 60 percent
of Federal installations deserves a specific guidance document and
the commitment of resources to produce it.

NBS officials suggested some rewording, but we made no changes
based on their suggestions. We believe that we have presented the
material accurately, and we feel that the points they suggested we
delete are relevant to this topic. We have, however, added their
publications to the reference list. They appear on pages 61 and
62.

FEDSIM had no comment on the substance of the draft report.
They requested that we clarify that the person we spoke to was
not expressing a FEDSIM agency position. To clarify, we have
changed the wording on page 57 from "a FEDSIM representative" to
"a member of the FEDSIM technical staff."

A/NBS Special Publication 500-79, "An Assessment and Forecast
of ADP in the Federal Government," National Bureau of Standards,
Washington, D.C., Aug. 1981, p. ix.

26

APPENDIX I APPjENDIX I

PROVISIONAL CHECKLIST FOR REDUCING MACHINE

RESOURCES CONSUMED BY COBOL APPLICATIONS

Introduction

Appropriate level of effort

The general procedure

Costs and benefits of performance improvement

Selection of existing applications to tune

Construction of new applications

Specific techniques and considerations

Tools considerations

For Gu,idance of ADP Managers, Programmers, and

Analysts Responsible For COBOL Improvement Effort,s

Page

28

28

28

31

33

33

34

42

44 Interaction with the users of applications

I 27

APPENDIX I APPENDIX I

INTRODUCTION

This checklist, which we prepared during our review, lists
matters that we feel agency ADP management and programmer/analysts
should’consider to reduce the machine resources consumed by their
COBOL applications. A few specific technical considerations are
included because we feel they are very useful.

While this checklist is only a’,a interim document pending pub-
lication of NBS guidance, we feel it will be useful to persons in-
volved with COBOL applications. The levels of effort and emphasis
devoted to specific items mentioned will vary with the type and
size of specific applications and installations. Programmers and
analysts should have no difficulty in grasping these matters and
formulating an appropriate approach to their use.

APPROPRIATE LEVEL OF EFFORT

Recognizing that this type of work is easy to delay because
of the many “higher priority” demands for skilled labor, we sug-
gest that a small segment of time be set aside every year during
which some effort, albeit small, is dedicated to measuring and
reducing the machine resources consumed by COBOL applications.

Periodically measuring and recording the resources consump-
tion is, we believe, the minimum level of effort. After estab-
lishment, it can be done with little effort and will enable trends
in consumption to be identified. Such measurement will also pro-
vide input for capacity management planning and for equipment de-
cisions.

Larger installations can and should commit continuous re-
sources; for smaller ones , yearly measurement and an “overhaul”
of the most expensive applications every 2 to 3 years are more
appropriate. In all cases, the labor and computer time spent on
tuning should be recorded and compared to the resources saved,
“valued I(at local charge rates. If the work does not make a “pro-
fit,” it should be reduced.

THE GENERAL PROCEDURE

For a given inventory of applications at an installation, the
general steps would be:

--Examine the application inventory to see if it includes much
COBOL.

--Examine the log data to determine which applications cost
the most to operate, including CPU and input/output (I/O)
times for executing the program(s) and storage costs for
the files. A smaller application that runs frequently may
use more resources than a large one that runs once a year,
so the variables to be considered include frequency of ex-
ecut ion, resources consumed per execution (CPU and I/O

28

APPENDIX I APPENDIX I

time), and constant consumption (file storage). For pur-
poses of decisionmaking and comparison to labor cbsts, an-
nual dollor cost of machine resources can be calculated at
local charge rates.

--Identify those expensive applications that appear to have
some potential for optimization. This includes impressions
from persons familiar with applications--for example, some-
one may know that a certain expensive application,has
already been tuned and that it is not likely to reward op-
timization effort.

--If some applications with improvement potential ake identi-
fied, plan changes that seem to offer improvementk, then
plan instrumentation and comparison tests and exebute those
tests. Types of changes to be considered includes changes
to the COBOL source code itself, reorganization off the files
processed, and changes to the COBOL programs’ int;eractions
with external entities--such as the SORT/MERGE pa~ckage l/--
which the programs must interact with. Instrumen:tation-
possibilities include timings and execution count data on
a program’s execution, information on file activity in a
typical run, and information on time the application spends
in entities ,outside its COBOL programs. Labor and hardware
costs of this analysis and testing should be recorded.

--If a new version is better, demonstrate by tests ,and com-
,e parisons that the users’ answers are unchanged from those

of the previous version(s) of the program(s); su’ject the
3 new version to normal acceptance testing and doc’mentation

(as done with new development). Record these costs.

--Place the new version into production and run at’least one
production cycle in parallel. The extra cost of ‘doing this
parallel run of old and new versions should be charged as
one of the costs of the optimization work.

--After several production cycles, verify that the +iew ver-
sion is indeed better than the old one.

--6esides programs and their files, consider the efficiency
of external items widely used in, by, or with the COBOL ap-
plications. Examples include the SORT/MERGE package used,
standard routines which are replicated in many programs by
use of the COBOL COPY verb, and subroutines which many
COBOL programs CALL. (Our experiment with the standard

L/The SORT/MERGE package is a utility program which sorts records
into ascending or descending order (as specified) on specified
keys--for example, ascending *order on S’ocial Security number.
The COBOL verb SORT communicates with this package.

I

29

APPENDIX I APPENDIX I

print routine at USAMSSA illustrated a COPY text improve-
ment, and others reported improvements with better use of
SORT/MERGE. l/ This illustrates the potential of such con-
sideration o”? external items.)

At the level of individual programs, a published paper 2/ ex-
plained the general methodology as:

“Methodology

A program chosen as a candidate for optimization should
be debugged and thoroughly tested. The input data fcr
use during the optimization process should be live data
representative of a typical run; its blocking and orga-
nization should not be altered except in the course of
the optimization itself. This is critical, since the
inspection of the coding in itself tells little about
the run characteristics; it is the interaction of the
program and its data which is the subject for measure-
ment, analysis, and improvement. 2-/

“The general methodology for optimizing a COBOL program
is as follows:

1. Determine where the program is spending its time by
applying an appropriate measurement tool. Direct
optimization efforts at those areas which are most
critical in order to achieve the maximum gain for *
the minimum effort.

2. Apply efficient COBOL coding techniques to the pro-
gram making source level changes to minimize format
conversion, loop housekeeping, and unnecessary data
manipulation in the generated code.

3. Apply efficient data management techniques to the
program, if it is I/O bound, to reduce elapsed time.
This may involve changing access methods, block-’
sizes, job control language, and source level state-
ments.

When the process first begins, each coding and data
management technique applied will ‘buy’ an obvious
improvement in efficiency. As optimization”

&/Grossman, “A Procedure to Peview and Improve the Operatiional
Efficiency of Production Systems,” Nineteenth Annual ACM/NBS
Technical Symposium, Gaithersburg, Md., June 19, 1980, p. 224.

~ z/Budney, op. cit., p. 222.

30

APPENDIX I APPENDIX I

4.

5.

“proceeds, however, the gains received for the
effort will decrease. At some point, each program
change will result in little, if any* improvement;
at this point,
mized.

the program is, essentially, opti-

Use an objectrlevel optimizer to produce a more
efficient--and smaller--load module. 1/ s/

Execute the optimized program on appropriate test
data and compare the outputs with those of the un-
optimized program. This can be accomplished using
a file/data comparison utility, allowing the comgu-
ter to do the actual comparison of the data and re-
port differences between the outputs of the old and
new versions of the program. This will help verify
that the optimized program gives results identical
to those of the unoptimized program and ensure that
the integrity of the program has not been lost.”

COSTS AND BENEFITS OF
PERFORMANCE IMPROVEMENT

Performance improvement is done to reduce the machine re-
sources consumed by applications or to correct operational FrOb-
lems. Sporadic operational problems may simply demand correction;
however, continuous improvement work to save machine resources must
“make a profit” on the resources expended to get the improvement.
This is why the appropriate course for smaller installations may
be to have an “applications overhaul” every 2 to 3 years with
little or no continuous effort in between.

The costs of performance improvement typically include both
machine time and analyst time for the following purposes:

--Identifying expensive applications.

--Discussing them with their “owners,” -including cos~t history,
processing cycles, special uses, or anomalies encoiuntered.

--Preparing test materials, including working copiesi of
programs, test data, documentation, and test tools~.

&/Budney, op. cit., pp. 226-227.

z/The load module is the output of the linkage editor which links
together the object code produced by the compiler and other
routines and resolves external references. The load module is
ready for execution.

31

APPENDIX I APPENDIX I

--Planning test runs.

--Analyzing test run data.

--Running additional tests if needed.

--Convincing users that the modified application (1) is better
in the machine and (2) processes their data in the same way
as the version they are now’using.

--Documenting changes made and predicated savings,

--Running in parallel operation with the current version for
at, least one production processing cycle.

--Turning over to production.

--Following up after 6 months to a year to verify savings.

The benefits of performance improvement can include:

--Savings in machine resources which can be used for other
tasks.

---Deferred procurement of hardware.

--Eetter user service, such as quicker turnaround.

--More reliable software due to discovery and removal of old
errors or omissions.

--Training development and maintenance applications program-
mers because of their interactions with skilled! performance
improvement analysts.

When evaluating performance improvement work:

--‘“Value” at local charge rates machine resources’ recovered
and the machine resources used for the improvement.

--Value analyst labor at salary plus overhead.

--Consider how long the improved application will last before
(1) functional maintenance changes cause it to be so “dif-
ferent” that the calculated savings are no longer valid or
(2) it is replaced or discarded.

--Use a one-year maximum payback period as the general cri-
terion for judging whether the improvement work is worth-
while.

--Keep good records of benefits realized and methods used.

APPENDIX I APFENDIX I

SELECTION OF EXISTING APPLICATIONS
TO TUNE

Existing applications must be judged as “worthwhile” to be
selected for tuning. Worthwhile may mean correcting a user’s op-
erational problem, such as too slow turnaround, or it may mean
recovering signif icant machine resources.

Applications that cause user p,roblems will be easy’to select
because the users will complain about them. A regular, planned
effort to recover machine resources, however, should focus on high
cost applications (“resource hogs”) because it is in those appli-
cations that such efforts can pay for themselves.

A useful aid is to produce lists of the applications sorted
in several different orders, including:

--Descending order of CPU time.

--Descending order of amount of file storage media used in
a year I s processing.

--Descending order of maximum requirement for highspeed memory
(to run the largest program in the application).

Once the expensive applications are identified, then, within
the applications, the expensive programs can be identified. Very
often, one or two programs and their files--in an application that
may consist of dozens of programs and files--may consume most of
the resources that the entire application consumes. The general
20/80 rule applies: to applications within a group of applications,
to programs and files within a group of programs and files, and
to paragraphs within a single program. The 20/80 rule is that a
few consumers (for example, 20%) very often consume a dispropor-
tionately large share of the resources (for example, 80%).

Thus, effective resource recovery work requires successively
narrowing down the attention to applications that are kikely to
repay improvement work and ignoring the other, cheaper-to-run ap-
plications.

CONSTRUCTION OF NEW APPLICATIONS

Several principles apply in the construction of new applica-
tions. Correctness is paramount: Users will not take’ kindly to
an application that runs faster on the machine but del’etes, for
example, the accounts receivable file from a customer gata base.
More generally, other software quality characteristics, including
correctness, maintainability, error/exception handling,, and port-
ability must be considered and successfully resolved before ma-
chine efficiency.

33

APPENDIX I APPENDIX I

Many of the techniques and considerations that can be retro-
fitted to existing applications to recover resources can also be
used in constructing new applications. Some of the more efficient
alternatives, once learned, are as easy to use as less efficient
ones, especially if their use is planned before any source code is
actually written.

Other techniques must await some actual production history
before applications can be fine-tuned,with them. An example is
the question of how often an indexed file must be reloaded to
maintain acceptable response times. Another example is that of
verifying the data profile type of performance improvement; for
example, rearranging a searched table according to hit probabil-
ity.

Vendor-unique and/or device-dependent considerations may be
unavoidable; for example, (1) file block sizes which are chosen
to closely fit the track size of a given disk device, and (2) use
of vendor-unique COBOL source language to provide in-core indexes
for quicker retrieval from indexed files.

SPECIFIC .TECHNIQUES AND CONSIDERATIONS

This section discusses some specific techniques and consid-
erations that often arise when COBOL optimization is done.

Program modification (source code)

Structured proqramming

This method results in better planned, better organized pro-
grams which are more maintainable (see above) and which have a
better chance of avoiding redundant or erroneous code.

When structured programming was introduced, it was said that
structured programs might be less efficient but that reduced main-
tenance labor costs would more than make up for possible increases
in machine costs. However, further’use and investigation of
structured programming have led us to believe that not only does
structured programming not conflict with machine efficiency, but
that it probably yields=tter machine efficiency for realistically
sized, long-lived applications. The head of the GSA compiler test-
ing center said that with some COBOL programs tested there, struc-
tured programs were more efficient.than unstructured ones doing
the same tasks. And an IEM paper IJ said:

.&/Capers Jones, “Optimizing Program Quality and Programmer Pro-
ductivity: The Improved Programming Technologies,” SHARE 50,
pp. 15-16.

34

APPENDIX I APPENDIX I

“When I first started exploring the new programming
technolog lies, my expectation was that a topdown,
structured program written in a high-level language
would be considerably larger and would execute more
slowly than an unstructured program written in BAL.
To my surprise, when I looked at the results of re-
programming some ‘old style’ programs into topdown,
structured form some of them (but not all) actually
were smaller and executed more rapidly with the new
technologies than they did before.

Q/l

* * * * *

“When I looked into the lcomplexity’ issue to find
out why many old-style programs were so complicated,
I discovered that much of the complexity seemed to
be unnecessary, and was a result of bottom-up,

rather than a result
al needs. * * * The over-

all situation regarding the impact of the improved
programming technologies on performance and execution
speed is ambiguous today. Some programs seem to
improve or speed up their performance when redone with
the new methods, while others may grow larger and
slower. The important aspect of the situation, how-
ever r is that the automatic assumption that top-
down structured programs written in high-level lan-
guages will be larger and slower than unstructured
BAL equivalents seems not to be generally true.”
(Underscoring provided.)

Thus, machine efficiency should not be an excuse for destruc-
turing a structured program. Also, of course, the additional
maintenance labor caused by destructuring would very likely far
outweigh possible gains in machine efficiency.

Choice of alqorithms

A better algorithm in standard COEOL will be more efficient
than a worse algorithm that uses vendor-unique features in an at-
tempt at speed. An example is table search algorithms: COBOL pro-
vides the SEARCH--WHEN construct for linear searches, and the
SEARCH ALL--WHEN construct for binary searches. Yet programs fre-
quently include clumsy, handcrafted searches (constructed of itera-
tive loops and the like) that could be better handled by the built-
in constructs. Not only are the built-in constructs often more
efficient than the handcrafted searches, but the built-in constructs
are also much better for the maintenance programmers--they always
work the same way because the COBOL standard requires them to do
so and they are shorter. .

; lJEasic assembly language-- IEN’s term for their assembly language.

APPENDIX 1 APPENDIX I

. *
Specific techniques should be followed for table search im-

provement! as follows.

--See if the search needs to be done at all, or as often as
it is now being done.

--If all cells of the table have about equal probability of
being the target of a given search and the table has over
30 cells, use a binary search: the SEARCH ALL--WHEN con-
struct.

--If a few cells of the table have very high hit probabili-
ties, compared to the other cells, either handle them
specifically with IF tests before entering the general
SEARCH construct or put them first in the table and use a
linear search (the SEARCH--WHEN construct). Examination
of execution counts from test runs will often identify
which cases are “hit” most often if the test data is rep-
resentative of production data.

--If the table is large and well ordered (for example, sorted)
a partitioned scan can be used. This technique first iso-
lates the location of the search argument to a partition
of the table, then searches within that partition to find
the argument.

--Generally, avoid handcrafted searching techniquesand, if
possible, replace them in existing programs. In many situ-
ations they are inferior to the standard SEARCH--WHEN and
SEARCH ALL--WHEN constructs for two reasons: (1) maintenance
programmers have difficulty with them because they are non-
standard and must be deciphered and (2) they often are less
efficient than the standard constructs.

Use of vendor-unique source code.

Generally avoid using nonstandard source code (extensions).
Especially avoid useless items such as nonstandard spellings of
reserved words. Unless clearly justified by savings, avoid using
packed or other nonstandard data representations. Extenslions that
are justified and very useful include those that allow file block-
ing information to be supplied by the operating system so that the
same program can process files with different blocking factors
without recompilation.

Input/Output

Selection of file organization.

Standard COBOL (1974) now supports three file organizations:
SEQUENTIAL, RELATIVE, and INDEXED. The last two were inclluded to
support efficient use of direct-access devices such as disks. The
older 1968 standard supported only SEQUENTIAL organization, forcing

36

APPENDIX I APPENDIX I

applications to use vendor-unique COBOL Input/Output (I/O) features
in order to effectively uBe direct access devices.

Modifying the file organization of an existing application
requires great care: Several programs may use the.same file(s)
and, to avoid redundant files (for example, two copies of the same
information organized differently), reorganization of the file for
better performance with one program may require that other programs
be modified to handle the new file organization. Also, the storage
devices must be loaded with the file(s) and tested. The complica-
tions may preclude reorganizing the files of an existing applica-
tion.

For new applications the choice of file organization should
consider hit ratio(s) anticipated, types of devices, (both avail-
able and anticipated), and the anticipated growth of the file(s).
We believe that many COBOL programmers are ill-informed about the
nonsequential file organizations and thus use SEQUENTIAL organiza-
tion for situations to which it is less well suited than a nonse-
quential organization would be. They use SEQUENTIAL because they
know it and can get something working more quickly with it.

Vendors’ programmer guides often include detailed advice on
the organization and processing of files, and should be consulted,
preferably before the application is coded.

Blocking and buffers.

The practice of blocking records consists of having more than
one logical record l/ in each physical record. 2/ W ith larger
blocking factors, 37 fewer physical READS of thg storage device
are needed. A rel?;ted matter is buffers. Buffers are holding
areas in main memory into which information is transmitted from
the file device in readiness for processing by the application pro-
gram. Significant reductions in I/O time charged to run the pro-
gram and in space required on file devices have been achieved with
reblocking and more buffers in some cases. And, if the COBOL pro-
grams were originally written to be device’ independent, $his im-
provement can be accomplished without recompiling the COBOL source.
Vendors’ programmer guides contain guidance and such reblocking
of files is often supported by vendor utility programs.

1,/A logical record is the record seen by the COBOL program.

J/A physical record is the information transferred by one physical
READ of a device (for example, one motion of a tape). It may
equal one or more logical records.

i/Blocking factor is the number of logical records per physical
record.

37

APPENDIX I APPENDIX I
l

Reloading indexed files.

Significant improvements in reduced elapsed time can be
achieved with reorganizing indexed files on their storage devices.
An example is our work on the program at USAMSSA. Such reorgani-
zation is needed after a file has been used to reload overflow
records into prime data areas and, perhaps, to recover record
areas that have been logically deleted, but still occupy physical
space” Also t for large indexed files, the physical location of
the index I prime, and overflow areas can have significant effects
on performance. lJ

Use of vendor-unique COBOL features for I/O.

This should be avoided if possible, especially in the con-
struction of new applications. When used, vendor-unique ‘COBOL
source language features should be well documented so that they
can be found and removed if a later conversion to non-plu,g-
compatible hardware is necessary. Also, choices, such as block
sizes, which relate to capacities of specific storage devices
should be well documented because the files may eventually be mi-
grated to other devices whose different properties may have per-
formance implications.

Some vendors offer COBOL source language extensions which
provide very helpful I/O improvements. Examples include language
that causes file indexes to be loaded into main memory four faster
searches and language that causes the data management routines to
provide information for judging the worth of reorganizing an in-
dexed file.

External entities

External entities to programs may be used to enforce stand-
ardization or to reduce coding labor for tasks needed by many pro-
grams. External entities include subroutines, COPY text, and the
SORT/MERGE utility. Generally, if an external entity is used by
many programs, then relatively small improvements in the entity
will be significant because they will be multiplied by the number
of programs. Also, if a COBOL program’s main purpose is to “feed”
an external entity (for example, a COBOL program which communicates
with the SORT/MERGE utility via the COBOL source SORT verb) then
most of the CPU time charged to executing the COBOL program will
actually be spent in the external entity.

i/Newer types of indexed file organization can supply authnatic
reloading.

38

,,,,*q ” !J’, ., :,’ ‘,’ 2 “, 1 I’. :
*I ,, ‘,I’

APPENDIX I APPENDIX I
. .

Subroutines.

These are separately compiled subprograms which a main program
invokes with the CALL verb. They offer the following advantages:

--Modular programming. A subroutine can only access data
items that are made available to it through linkage; the
rest are protected. This can greatly aid debugging.

--Division of labor. The use of subroutines allowslarge
programs to be divided among several programmers.’ All the
writer of a subroutine need know about the rest of the code
is what data items are to be communicated to and from it.

--Securit -Ti-+’ Programmers can use a subroutine (by having
t e r programs CALL it) without knowing the logic of the
subroutine; all they need do is communicate the appropriate
data items for the task to the subroutine.

However, a CALL to a subroutine is often slower than a PERFORM
of an internal paragraph. If a subroutine is CALLed many times,
a CPU saving may be achieved by turning it into a PERFORMed para-
graph in its former CALLer.

COPY text,

The COBOL language includes a COPY verb that causes actual
COBOL source language to be inserted before the program is com-
piled. Text COPYed may be either procedural or nonprocedural. If
a COPY text is used by many programs, it should be reviewed for
performance implications. We were able to demonstrate significant
improvements at the Defense Mapping Agency by changing a standard
print routine used by many programs.

SORT/MERGE.

The SORT/MERGE utility is commonly invoked by the COBOL SORT
i verb. It can consume a major part of the CPU time charged to the
~ program that invokes it. Ways to improve sorting include:

--See that only the records that need to be sorted ar,e passed
to the SORT/MERGE. For example, select them in an INPUT
PROCEDURE in the COBOL program.

--Ensure that the SORT/MERGE has adequate work space areas.

--Procure a more efficient SORT/MERGE utility--for some com-
puter vendors, independent software houses supply more ef-
ficient SORT/MERGE utilities to replace the hardware ven-
dor’s utility.

I 39

APPENDIX I APPENDIX I

Some vendors provide COBOL source language extensions for
communicating with the SORT/MERGE. Their use should be well docu-
mented. Vendors' COBOL programmer guides often include advice on
efficient sorting.

Test data for performance improvement

Test files are important in performance improvement work. The
test files must correctly repressbat the production files in terms
of file organization, location on devices, and frequency distribu-
tion of data. For example, if the production file isiorganized
sequentially, its test counterpart should also be sequential; if
the production file is spread over three devices, its test counter-
part should be also; if the production file, for exam'le, contains P 30 percent employees with 4 dependents and 20 percent employees
with 5 dependents, its test counterpart should have t h e same pro-
portions. If the test files do not accurately represent the pro-
duction files, then the "improvements" seen during teasting of
changes may not be reflected in production.

Sometimes, working copies of production files can be used for
performance improvement testing. Often, however, testing with the
complete production files would cost too much, and they must be
abstracted to prepare test files. Preparing a test file by copy-
ing every third or every tenth record from the production file(s)
is often sufficient. Frequency distribution phenomen4, however,
should be verified. Test files can often be preparedlwith utili-
ties I

Automatic optimization

The great attraction of automatic optimization i
i

that it
takes no analyst labor-- a processor does the work. A tomatic op-
timization reprocesses the object module produced by the compiler
to eliminate unnecessary instructions. Automatic optimization may
be provided with compiler options or with separate processors.
Separate-processor automatic optimizers have been particularly
successful on IBM and plug-compatible mainframes. House Informa-
tion Systems told us that the one they use had paid fdr itself
very quickly and that they ran all their production COBOL programs 1
through it.

Paging environments

Some brands of computers provide memory paging in which pro-
grams are divided into "pages" and those pages not currently exe-
cuting are not in the main memory-- they are brought in when it is
"their turn."

Some COBOL programs spend a lot of time transferring pages in
and out of main memory to the detriment of accomplishing useful
work. This phenomenon, called "thrashing," can be reduced by re-
arranging the programs' source code. Vendors' programmer guides
include advice on this subject.

40

APPENDIX I APPENDIX I

Paging can be controlled by (1) rearranging the program source
code to take advantage of the known behavior of an automatic pag-
ing mechanism or (2) actively controlling the paging mechanism by
changing page size or overriding the page assignments and priori-
ties of parts of the program, Depending on the hardware vendor,
operating system, and compiler, this may be done with control
language, linkage editor, and/or COBOL source extensions.

The production effect of paging optimization can depend upon
what the mix is --what other programs are contending for resources,
If no other programs contend for resources (for example, on the
third shift) a theoretically better paging arrangement may yield
little practical benefit.

We believe that deliberate tuning of paging should be avoided
in many cases because it can make the application’s performance
dependent on the operating system, the compiler, or on the mix in
which it is operated, with adverse impact on later conversions.

Bxecutions of more than one program
i,n succession

Production job streams may cause several programs to be exe-
c~uted in succession without human intervention. The first program
to execute may output files which are the input to the programs
executed after it. If, in this case, the first program does not
execute correctly, succeeding programs’ executions will be useless.

A way to avoid useless execution of the second, third, etc.,
programs in the job stream is to have the first program communi-
cate a “go ahead” signal to its successors. This may be achieved
either by having the first program write a special signal record
which is read by the second program before it starts processing,
or by using vendor-unique source language to communicate with the
operating system’s control language to allow, or not allow, the
successors to be executed. Use of vendor-unique language for this
purpose can be cheaper and more convenient than a special signal
r~ecord file, but it must be carefully documented. inn It does “lock-

the application to the specific vendor, so it must be changed
when the vendor changes.

Another cost reduction can be achieved through “run stream
Optimization” in which a run stream (job stream) that executes
sleveral small COBOL programs with the passing of many small, in-
termediate files, may be improved by combining the COBOL into

larger programs and eliminating some of the intermediate
This method can yield handsome improvements but requires

of programs, some recoding, and much testing---it is not
“quickie band-aid fix” as some of the other methods are. -

41

APPENDIX I APPENDIX I

TOOLS CONSIDERATIONS

Automated tools used can be divided into three general
categories--the log, analysis aids, and automatic optimizers.

vendors normally provide a file which captures log data on
what was run on the machines. The log data (1) provides a history
of what was executed and (2) can be used to identify very expen-
sive single jobs, jobs with very long elapsed times, and programs
which are executed very frequently when its records can be sorted
by CPU time consumed, by elapsed time, and/or by progriam/job name.
Such manipulations will provide a “most wanted listt’ of applica-
tions-- those that consume the most resources. Softwar;e packages
or relatively straightforward, locally written extraction programs
can greatly aid analysis of the data in the log file.

Analysis aids can provide useful information for identifying
and tuning expensive applications. They may summarize’ information
that could more laboriously be gathered manually--such as a list
of programs sorted in order of CPU time consumed. They may also
collect information that is difficult or impossible tom get
manually-- such as the percentage of a program’s total CPU time
that is spent in each part of the program. Better information
from analysis aids reduces the labor cost of analysis and reduces
false starts at improvement. Some of the information, such as
execution counts, may also locate logical errors. Analysis aids
may be provided as compiler options or as separate processors.

Analysis aids include:

--Computer resource accounting aids which identify jobs by
resource consumption. Some subdivide the information to
the individual program level.

--System analyzers which can (1) trace the flow of data and
the consumption of resources through a group of ,programs
making up an application and (2) identify which’programs
in the group consume the most resources.

--Individual program analyzers which will quantify the be-
havior of individual programs by showing how many times
parts of the program are caused to execute by a given data
set, or how much time is spent in each part of the program,
or both.

--Testing tools which can, for example, automate the compari-
son of outputs produced by the old and new versions of pro-
grams that have been optimized, to verify that the optimized
one gives the same user results. L/

&/Testing is discussed in “Software Improvement--A Needed Process
in the Federal Government,” Report OSD-81-02, Office of Software
Development, ACTS, GSA, June 3, 1981.

42

APPENDIX I APPENDIX _

Automatic optimization may be done as an additional phase of
the compiler, or implemented as a separate processor. Korking
directly on the object module lJ produced by compilation, auto-
matic optimizers remove unneeded machine instructions and improve
flow of control, thereby reducing the size and increasing the
speed of the load module J/ that will be link edited 3/ from that
object module.

General observations that we believe apply to automated tools
of either kind include:

--Sources of tools. Use what is available. If at all possi-
ble, use tools or aids that already exist in the system of
interest, If the desired aids do not exist on the-computer
on the computer of interest, search for tools that exist
at other installations with the same type of computer and
try to share a copy. A suitable tool may also be available
from the Federal Software Exchange operated by GSA, and
they should be consulted. If this fails, consider--with
appropriate planning and testing--an available off-the-
shelf software product. Software tools should be custom-
built only when (1) demonstrated improvement potential is
greater than the estimated cost to build the tool, (2) a
plan for their use exists which includes a postinstallation
audit to establish whether building the tool was worthwhile,
(3) serious search shows that there is no alternative, and
(4) their eventual use at other installations is possible.

--Plan for use. Do not acquire tools haphazardly with no plan
for their use.

--Availability of tools, experienced analysts, and information.
These are much more readily available for some brands of
computers than for others.

--Whether or not suitable commercial tools are on the GSA
schedule contracts. GSA has negotiated schedule contracts
for some commercial tools. Such contracts establish a
baseline price and terms and conditions which individual
agencies can use.

&/Object module is the output of the compiler, which translates
the COBOL source statements written by the programmer to an

I intermediate machine-language object module.

z/Load module is the output of the linkage editor which links to-
gether the object code produced by the compiler and other pro-
grams and resolves references. It is ready for execution.

a/Link editing is the activity of the linkage editor in producing
a load module.

43

APPENDIX I APPENDIX I

INTERACTION WITH THE USERS OF APPLICATIONS

Functional users

The functional users (for example, the payroll department is
the functional user of a payroll program) must be involved in the
performance improvement process at, at least, two points: (1) the
very beginning and (2) the turnover of an improved cheaper-to-
operate version to production. At the very beginning, the users
can supply information about cost and processing frequency as well
as information about the production data and files--both what is
typical or very common and what sort of anomalies have been en-
countered. The users must be involved in turnover because they
must be satisfied that the revised cheaper-to-operate application
still gives the same results over the same domain of input data as
the original application.

Separate performance analysts and application
programmers/analysts

If the group responsible for performance improvement work is
separate from the applications programmers/analysts, considerable
tact must be exercised and a cooperative spirit developed. Other-
wise, there is an implication that the applications programmers
are "unskilled, poor programmers because the performance group was
able to make their program run twice as fast." Concerning this
implication, the following should be kept in mind.

--Applications analysts/programmers have different skills.
They must, for example, know a good deal about the appli-
cation whereas performance persons need not.

--The performance group can educate the applications pro-
grammers to select alternatives that are more efficient.
Some of these alternatives are as easy to use as less ef-
ficient ones.

--Applications programmers/analysts often have a bdcklog of
user functional requests and don't have time for performance
work.

APPENDIX II APPENDIX II
.

SUMMARIES OF WHAT WE

FOUND AT THE SITES VISITED

Page

Sites at which we reviewed documentatian
of COBOL improvements

Sites at which we completed COBOL resource
reduction experiments

Sites at which we discussed Government-wide
aspects of COBOL performance improvement

46

50

55

APPENDIX II

SITES WE VISITED

APPENDIX II

INSTALLATIONS AT WHICH WE REVIEWED DOCUMENTATION
OF COBOL PBRFO#hlANCE IMPROVEMENT

We visited three Federal sites that we knew had steady ef-
forts to reduce resources consumed by their COBOL applications.
We wanted their thoughts on management of the work, methods used,
and results.

Site 1: Housing and Urban Development
Office of ADP Systems Development
Washington, D.C.

This site had one UNIVAC 1100/81 and two UNIVAC 3108s. About
97 percent of the estimated 3,320 hours of yearly CPU~ use is con-
sumed by COBOL applications. Many of the COBOL programs were
still in ANSI 1968 standard COBOL when we visited butt are being
converted to ANSI 1974 COBOL. A paper published by a' HUD repre-
sentative l/ discusses the agency's efforts and illustrates strik-
ingly the ?20/80 phenomenon: For a group of 78 system& executed
on one mainframe at HUD, one system (l/78) consumed 20 percent of
the total production CPU ne by itself; eighteen systems (18/78--
about one-fifth) consumed 82 percent of the CPU time--this is
almost exactly 20/80 proportions.

HUD has a formal Standards and Quality Control Group whose
responsibilties include I'* * *procedures to upgrade the efficiency
of operational systems as well as procedures to enhance the reli-
ability of new systems." The group is also responsible for per-
formance improvement. The group uses system accounting data--
aggregated into production utilization reports--to identify
expensive applications and the COBOL Instrumentation Processor 2/
to collect execution counts and timings for programs of interesr.
Some hand analysis is done to evaluate input/output alternatives,
and the SCORE package is used to generate COBOL progrdms to ex-
tract test data from production files. We analyzed HUD results
from performance improvement of five systems to obtain a net
benefit. Our results are shown in detail in chapter 2 of this
report.

HUD representatives told us that their present level of effort
will continue for the foreseeable future.

--

l-/Grossman, "A Procedure to Review and Improve the Operational
Efficiency of Production Systems," Proceedings of the Joint
NBS/ACM Symposium, June 19, 1980.

z/Developed in the Department of the Navy.

46

APPENDIX II APPENDIX II

Sife 2: U.S. Army Computer Systems Command
Ft. Belvoir, Va.

This site develops Standard Army Management Information Sys-
tems which are run at multiple sites and which include Honeywell,
UNIVAC, and IBM computers. USACSC has an ongoing concern with
performance improvement which is required by Army Regulation
AR-10-9: But USACSC is motivated by the visibility of its cen-
tralized mission and by the fact that an improvement in a stand-
ard system is multiplied by the number of sites at which it runs.

USACSC uses a number of tools and techniques for reducing
the machine resources consumed by COBOL applications: (1) review
by a third party who is independent of the developer, (2)'testing
application systems in a test-bed site before wide release, and
(3) using automatic optimizers and fine-tuning after a sysitem has
been in widespread production for 6 months or more. We were told
that performance considerations are always part of development
and qualification testing.

We were told that various vendor products and techniques have
been used as appropriate and that significant and worthwhile reduc-
tions in machine resources consumed by USACSC applications have
been achieved.

USACSC plans to continue its present activity in this area.

Site 3: House Information Systems
Committee on House Administration
House of Representatives
Washington, D.C.

This site uses IBM-software-compatible computers with both
batch and on-line applications, the latter running under Customer
Information Control System. A/ We visited Housing Information
Systems because we had been told that they use automatic optimiz-
ation heavily.

House Information Systems representatives showed us internal
documentation of their benchmarks of two products of the CAPEX
Corporation-- OPTIMIZER II and its replacement, OPTIMIZER III. The
representatives stated that OPTIMIZER III is the default that a
programmer gets with a development compile, that this is done to
ensure that programs put into production have been improved with
the OPTIMIZER, and that OPTIMIZER III has recovered very signifi-
cant resources. They felt that "dollar savings" would be more
relevant if an outside timesharing service were used. Then, a re-
duced CPU time consumption would be directly visible as ailesser
charge to run the COBOL program. They also stated that in their
environment of short time frame user requests and frequent func-
tional changes to programs, optimization by hand analysis, retest-
ing, and the like would not be feasible.

l-/Customer Information Control System, an IBM software product.

47

APPENDIX II

SITES AT WHICH WE COMPLETED COBOL RESOURCE
REDUCTION EXPERIMENTS

AP~PENDIX II

We completed experiments at several Federal sites that use
COBOL heavily. We wanted to demonstrate and verify the potential
of different techniques and to satisfy ourselves that the general
procedure is widely applicable. Several of our improved versions
are now in actual production at their respective installations.

Site 1: Defense Mapping Agency
Brookmont, Maryland

This site had a 15-year-old Burroughs B3500 computelr with
235 of its 350 production programs written in COBOL withi a com-
piler conforming to the 1968 COBOL standard. Before our' visit,
applications improvements had been limited to system flow improve-
ments, such as combining programs to reduce the number oif tempo-
rary files and changing processing from sequential to ra~ndom.
Also, the agency used the COBOL COPY facility to allow the repeated
use of identical code by many programs, which improved p#rogrammer
productivity. The agency was already planning a conversion when
we arrived.

We used the monthly workload report --produced by a Burroughs
product named LOGGER --and conferences with Defense Mapping Agency
staff to identify two programs for experiment. To get execution
counts, we used a software tool named COBTRAK which embeds addi-
tional COBOL statements in a COBOL program of interest so that
when it is recompiled and executed, counts of how many times each
paragraph executes will be displayed. COBTRAK is a GAO-enhanced
rewrite of a program,found at an installation we visited during
our earlier software technology project, a report on which was
published in April 1980. L/

One of the programs, YDDCOO, was the second largest CPU time
user among the major COBOL applications. It processed a large
file organized into master records and subrecords. About 40,000
master records organized by stock number could each have up to
100 subrecords representing customers interested in that stock
number, A transaction against a master record could require ac-
tions on every subrecord. We tested this program with 12 trans-
action records. COBTRAK execution count data showed that these
12 transactions caused 54,000 accesses to master records and
1.4 million accesses to subrecords. Further analysis showed that
this system needed redesign for a database approach which was not
supported by the old Burroughs 3500 --and was already planned for
the proposed replacement. Thus, it was not feasible to rework
YDDCOO in its present environment.

l-/"Wider Use of Better Computer Software Technology Can Improve
Management Control and Reduce Costs," FGMSD-80-38, Apr. 29, 1980.

I 48

APPENDIX II APPENDIX II

The other program, YAVK20, was one of over 200 COBOL programs
that used a standard print routine. The standard print routine
was copied into COBOL programs with the COPY verb so that program-
mers would not need to write their own printing logic. Agency
staff indicated that they thought it was inefficient. They also
indicated that, since it is written in COBOL, the standard print
routine would be carried over to the proposed replacement computer
with little or no change. We were able to demonstrate three ver-
sions of our improved print routine --one which was optimized for
CPU time, one for memoryI and one which improved both CPU and mem-
ory . Which to choose and realized savings of each depended on the
processing (for example, many or few lines of print) and whether
the program included the COBOL SORT verb. Our improvements to
YAVKZO yielded a lo-percent reduction in the CPU time per execu-
tion and amounted to 2 hours and 36 minutes of CPU time saved per
year --about $1,300 worth at local charge rates.

Agency officials indicated that they would do performance
improvement on their replacement computer after conversion. We
later inquired and were told that they had indeed converted the
standard print routine to their new computer and that they will
apply our standard print routine improvements to over 100 pro-
grams. While we cannot calculate the resource consumption reduc-
tion from this improvement, we are confident that it will be sig-
nificant.

Site 2t U.S. Army Management Systems Support Agency
Pentagon, Washington, D.C.

This site has IBM computers. About 60 percent of its 'pro-
duction programs are COBOL. The COBOL programs for which we were
able to obtain data consumed 700 CPU hours yearly--over $2:million
worth at the local rate. Data for 696 COBOL programs that were
run during March 1980 graphically illustrate the 20/80 rule--the
worst one-fourth (174) of the programs consumed 13 CPU hours while
the other 522 programs together consumed 61 CPU minutes and 43
seconds. Before we visited the site, very little had beendone
about the machine resource consumption of the COBOL applic+tions.
The Director of USAMSSA said he could not be concerned with machine
efficiency because of an enormous backlog of user-requested changes
and because his computer specialist staff was 30 percent udder
strength. A commercially available tool--COTUNE II--was installed
on the system but was used very little.

USAMSSA management suggested several programs for test pur-
I poses.
(

Another program was discovered because USAMSSA systems
programmers referred a user complaint to us. We used several

i tools and methods at USAMSSA--system log data, utility programs
1 summarizing that data, the commercial COTUNE II analysis aid,

utility programs that reported reorganization criteria for indexed
files, the commercial OPTIMIZER III automatic optimizer and anal-
ysis aid (in a demonstration arranged by us), and interviews with
maintenance programmers.

APPENDIX II APPENDIX II

We achieved several improvements. One small application cost
about $160 per year to operate, and the maintenance programmer said
he thought the output was no longer being used. We suggested to
USAMSSA management that they get user agreement to stop running
it. Also, we used the COTUNE II tool to aid hand analysis of a
program named SEQFORCR. We reduced its CPU time consumed by
17 percent with better table handling and reducing its core require-
ment by specifying no alternate area for its parameter card file.
We also inserted code to detect the absence of the parameter card
after we had demonstrated that the program would run anyway--giving
incorrect results--if its parameter card were left out.

We also made an improvement to a program named NEWFILEB. We
reorganized its indexed sequential files--providing a larger prime
data area-- and cut the elapsed time from 7 hours 15 mirutes to
1 hour 56iminutes and the CPU time from 8 minutes 36 seconds to
1 minute 38 seconds-- reductions of three-fourths and four-fifths,
respectively. We estimated $2,764 annual savings in CPU time
alone from these improvements. We also asked the CAPEX Corpora-
tion to demonstrate its product, OPTIMIZER III, on three programs.
OPTIMIZER III succeeded in reducing the memory size of the three
programs by 13, 16, and 23 percent.

We briefed USAMSSA programmers, analysts, and management on
the various improvement possibilities. USAMSSA management reiter-
ated their staffing problem and expressed interest in the CAPEX
OPTIMIZER III because it offers improvement without labor.

Site 3: Navy Regional Data Automation Command
Norfolk, Va.

This site has both UNIVAC and Eurroughs computers. Our ex-
periments were done on the UNIVAC 1100, model 40. About 1,400
Of 1,652 production programs at NARDAC are in COBOL. Before we
visited the site, its parent Navy Data Automation Command had
issued instructions (in April 1979) to improve UNIVAC 1100 appli-
cations. This improvement was motivated by both resource usage
and reliability concerns.

We used two tools to identify programs that consumed large
amounts of resources. Those tools were the Resource Utilization
System, developed by the Navy, and the Log Analysis Statistics,
Summary, and Other Program, developed by UNIVAC. After we had
selected two programs we used a third tool, the COBOL Instrumenta-
tion Processor, to aid our work on the individual programs. The
COBOL Instrumentation Processor modifies the object module pre-
pared from the COBOL source so that, when the program is executed,
information is captured about how many times each part of the
program executed and how long it took. Such information focuses
modification effort on high cost parts of the program a’nd verifies
the improvement, if any, from a given modification. The COBOL
Instrumentation Processor was also developed by the Navy.

50

APPENDIX II APPENDIX II

We identified two programs that were heavy user8 of CPU time
and modified their source code, using more efficient table handling
and more efficient arithmetic .than were used in the existing ver-
sions. We reduced by 40 percent the CPU time consumed by each
program. At the present number of production runs per yeart we
estimated that our improved versions would save about 13 CPU hours
in the first year of operation-- $650 at the local charge rate. We’
believe that further savings from improvements to other applica-
tions can be achieved.

We were told that the optimization directed by the Naval Re-
gional Data Automation Command is underway, that programmers have
been trained, and that all Navy Regional Data Automation Command
locally written programs will be reviewed for optimization poten-
tial on a time-available basis.

Site: 4 Automatic Data Processing Division
Bureau of Mines/Federal Center
Denver, Colorado

This site has a Burroughs 6750 computer with 852 of its 1,032
production programs written in COBOL. The COBOL compiler
(Burroughs 4.5) conforms to the ANSI 1974 standard. Before we
ar r ived , the site had gone through an extensive, 3-year optimiza-
tion effort under the leadership of a very skilled person who re-
tired early in 1979. It was the opinion of this person--documented
in a memo-- that much of the worthwhile optimization was completed
by the time he retired.

We used the system job summary to identify expensive ,programs
and to compare the costs of several versions. The COBOL c,ompiler
includes two excellent tools in the form of compile options:
ANALYZE and STATISTICS. The ANALYZE option gives messages about
the inefficiencies it discovers during compilations, including
potential excessive paging. The STATISTICS option causes the
compiler to accumulate execution counts and timings for each para-
graph of the source program.

Our work on the JA318F program showed that most of its time
(92-95 percent) was spent in communicating with a Burroughs-
supplied Data Base Management System. Although we thought that
becoming involved with the Data Base Management System was not
feasible, we did accomplish minor improvements in arithmetic by
changing data types. We did this easily and quickly, but the ac-
complishment was not significant. W ith the LF7440 program, we de-
monstrated a significant potential for improvement by controlling
the paging of the program. Burroughs’ “virtual memory” can be
controlled at the COBOL source language level by using the vendor-
unique semantics of the SECTION header and the SEGMENT-LIMIT clause.
Burroughs’ ANALYZE option gives messages about the program’s pag-
ing behavior. The program’s PROCEDURE DIVISION can then be re-
organized to reduce the paging.

51

APPENDIX II APPENDIX II

However, the practical value of the improvement depends greatly on
the environment, that is, how many other programs are contending
for memory at the same time as the program of interest. The fact
that LF7440 was well-structured made it easy to reorganize without
fear of'unforeeeen side effects. On the other hand, the third
program, LT5050r was zo poorly structured (14 ALTERS, many GO TO's,
etc.) that we judged it infeasible for optimization because pro-
hibitive amounts of analyst labor and retesting would have been
required to verify an improvement.

The director of the installation indicated he felt that peri-
odic performance improvement is appropriate for a site the size of
his--that the full-time continuous effort of even one highly
skilled analyst is not justified. He also felt that contractor or
temporary-position improvement analysts would be feasible if in-
house skills'were not available.

Site 5r Corps of Engineers
North Atlantic Division
Norfolk, Virginia

This site has a Honeywell 6120 computer. About 90 percent
of its production applications are COBOL. When we visited, the
majority of these were compiled with the Honeywell compiler which
conformed to the 1968 ANSI COBOL standard. The new 1974 standard
compiler had seen little use. Also, there seemed to be little
awareness of performance improvement.

Data center personnel identified two programs as good candi-
dates for improvement, The Honeywell documentation of the two
COBOL compilers (1968 standard and 1974 standard) showed that the
newer compiler used a different data management routine-~-the Uni-
versal File Access System-- from that used by the older 1968 com-
piler.

We converted two programs to compile and execute un~der the
1974 compiler and achieved a 20-percent reduction in CPU time com-
pared to the 1968 versions. We believe that the speed improvement
is at least partly due to the interaction of the access system with
the new compiler because the two programs were heavily input/output-
oriented. The conversions were not difficult. Most changes needed b
for recompilation were due to different requirements for using the
SIZE option. We also identified a general installation resource
constraint: Insufficient disk storage' required frequent copying
of files to tapes to free disk space needed for other processing.

The director of the data center said that center officials
plan to upgrade all locally maintained COBOL applications to ANSI
1974 COBOL starting with formal training in ANSI 1974 COBOL for
all data center and district programmers. He also said that more
disk devices had been ordered.

52

APPENDIX II APPENDIX II

SITES AT WHICH WE DISCUSSED GOVERNMENT-WIDE
ASPECTS OF COBOL PERFORMANCE IMPROVEMENT

Three organizations have Government-wide missions relating
to COBOL applications performance improvements FEDSIM, NBS, and
the GSA compiler testing center. We visited them and discussed
the subject. Much of what they told us is reflected in our dis-
cussion in chapters 2 and 3 of this report and in our provisional
checklist.

site 1: Federal Computer Performance Evaluation
and Simulation Center

Department of the Air Force
Washington, D.C.

FEDSIM was established to develop and maintain programs,
models, and techniques for simulating and analyzing automatic data
processing systems and equipment for all Federal agencies. These
tools are applied to various data processing systems and environ-
ments to improve ADP equipment selection, utilization, and perform-

ance.

A member of the FEDSIM technical staff said that their work
~ is request work. He said they get very few requests for reducing
(the machine costs of applications (in any language) because manage-
I ment in the various agencies does not see machine costs as their
~ most severe problem.

However, he did discuss two Federal sites that FEDSIM has
worked with. One site operated a mix of COBOL and FORTRAN appli-
cations. The COBOL applications were originally written effi-
ciently by professional 'programmers and little gain was made. On
the other hand, the FORTRAN programs were written by engineers and
analysts --not professional programmers --and significant resource
savings were seen. The second site obtained significant CGBOL im-
provements by "run stream optimization" --combining small programs
into larger ones and eliminating redundant files.

The thoughts of the member of the FEDSIM technical staff on
the management of COBOL performance improvement are included in our
provisional checklist. He thought that "operational" problems--
such as a new computer being saturated too quickly by blindly con-
verted programs, or output delayed by elapsed times that were too
long --were stronger motivations for performance improvement than
cost savings. He also said that he felt Government-wide guidance
is needed, perhaps in the form of a guidebook from NBS on the ef-
ficient and effective use of COBOL. He said that,this guidance
is needed to increase both the programmers' awareness of the per-
formance implications of their work as well as their knowledge of
better ways to use COBOL.

53

APPENDIX II APPENDIX II

Site 2: General Services Administration
Office of Software Development
Falls Church, Va.

The Office of Software Development includes the Frideral Com-
piler Testing Center and the Federal Conversion Support Center.
The former validates COBOL compilers for conformance to the Fed-
eral Information Processing Standard 21-l 1/ and the latter assists
agencies that are converting their applicazions programs.

The head of the compiler testing center said that, in his ex-
perience, performance improvement work need not interfere with ad-
herence to the COBOL language standard. He said that dignificant
reductions in applications' operating costs can often tie achieved
without using nonstandard COBOL language extensions. Concerning
the use of vendor-unique COBOL features, he said:

--All such use should be justified by significant cost sav-
ings.

--All such use should be well documented.

--Vendor extensions which do not affect the user's stored
data or computational results are much easier to take out
later. An example he gave is that of COBOL language fea-
tures that communicate with the vendor's data mdnagement
routines, such as a request for a file index to be copied
into core-- IBM's APPLY CORE-INDEX. Other vendor-unique ex-
tensions, such as packed decimal data, do affect the user's
stored data and can make conversion of the prog ams and
files to another brand of computer much more di % ficult.

Concerning programmer training, he feels many COBOL program-
mers know one-fourth or less of the COBOL vocabulary add know
little about how to use COBOL effectively and efficiently.

The head of the Office of Software Dtievelopment and the head
of the compiler testing center said that a Federal guidance docu-
ment to show programmers the effective and efficient use of COBOL
would be very helpful. They said, and we agree, that such a book *
should include concrete examples relevant to tasks that working
COBOL applications programmers commonly encounter. They said that
their organization would like to collaborate with the tiational
Bureau of Standards on a project to produce such a document.

l/Compiler validation as done by the GSA for COBOL tests whether -
or not a compiler includes the language elements of the standard
and that those standard elements work the way the standard says.
A compiler thus validated may also include nonstandard extras
called extensions.

54

APPENDIX II APPENDIX II

Site 3: U.S. Department of Commerce
National Bureau of Standards
Institute for Computer Science and

Technology
Washington, D.C.

According to the NBS program plan, the following responsi-
bilities assigned to the Secretary of Commerce under Public Law
89-306 have been delegated to the Institute for Computer Science
and Technology:

--To provide Federal agencies with scientific and technolog-
ical advisory services for ADP and related systems.

--To develop and recommend the establishment of uniform Fed-
eral ADP standards and to undertake necessary ADP research.

The NBS standards program includes a standard for the COBOL lan-
guage itself and software quality standards of good practice that
have been shown to lead to better, more efficient, and more easily
maintained software systems.

Much of what the NBS representatives said about the manage-
ment of performance improvement is reflected in chapters 2 and 3
and appendix I of this report.

One of the NBS representatives said that it is often very
difficult to calculate a true dollar value for benefits gained.
For example, if the procurement contract for equipment is fixed,
reducing an application’s CPU time will not immediately reduce
dollar outflow. We explained to him that we had come to think in
terms of recovered capacity that can be used for other purposes
and that eventually reduces costs because it allows a procurement
to be deferred.

Both NBS representatives stated that they felt that other
software quality factors must receive more attention than: machine
resource consumption and cited their publication on softw;are man-
agement. l/ They pointed out that the impact of incorrec’t soft-
ware on tEe user’s supported application can be far greater than
the cost of machine resources consumed, although it is difficult
to quantify. Both agreed that many COBOL programmers get little
formal training, are expected to learn on the job, and have little
concern for machine costs.

Concerning Government-wide guidance, the NBS representatives
pointed out that while they do not publish specific guidance on

I./NBS Special Pub: 500-11, op. cit., p. 30.

55

APPENDIX II APPENDIX II

using COBOL for applications, many of their existing publications .l-/
contain general principles that will yield more accurate, efficient,
and effective programs in COBOL as well as in other languages.
They also pointed out that there are a number of commercial books
on COBOL usage and that it is not clear that programmers who do
not read those will be any more likely to read a COBOL book with
an NBS cover on it. We pointed out that NBS felt it worthwhile to
publish a book on FORTRAN usage (Handbook 131) before FORTRAN had
even become a Federal standard language and that we felt COBOL de-
served separate treatment because its use is so widespread.

-m-m-

L/Including NBS Special Publication 500-56, “Verification, Valida-
tion, and Testing for the Individual Programmers.”

56

APPENDIX III APPENDIX III
18

LIST OF REFERENCES

U.S. General Accounting Office Publications

"Federal Agencies' Maintenance of Computer Programs: Expensive
and Undermanaged," AFMD-81-25, Feb. 26, 1981.

"Conversion: A Costly, Disruptive Process That Must Be Considered
When Buying Computers," FGMSD-80-35, June 3, 1980.

"Wider Use of Better Computer Software Technology Can Improve Man-
agement Control and Reduce Costs," FGMSD-80-38, Apr. 29, 1980.

"Contracting for Computer Software Development--Serious Problems
Require Management Attention to Avoid Wasting Additional
Millions," FGMSD-80-4, NOV. 9, 1979.

"Computer Performance Evaluation (CPE): An Auditor's Introduc-
tion," Nov. 1979.

"Auditing Computer Based Systems,' March 1979.

"The Federal Information Processing Standards Program: Many
Potential Benefits, Little Progress, and Many Problems,'
FGMSD-78-23, Apr. 19, 1978.

"Illustrative Accounting Procedures for Federal Agencies: Guide-
lines for Accounting for Automatic Data Processing Costs,"
Federal Government Accounting Pamphlet Number 4, U.S. GAO, 1978.

"The Federal Software Exchange Program --A Small Step in I'mproving
Computer Program Sharing," FGMSD-78-11, Jan. 13, 1978.

"Millions in Savings Possible in Converting Programs from One
Computer to Another," FGMSD-77-34, Sept. 15, 1977.

"A Working Glossary of Computer Software Terms," Sept. 15, 1977.

"A Selected Bibliography on Computer Software Conversion,'
Sept. 15, 1977.

"Auditing Computers with a Test Deck," Dec. 1975.

"Tools and Techniques for Improving the Efficiency of Federal
Automatic Data Processing Operations," B-115369, June 3, 1974.

"Opportunity for Greater Efficiency and Savings Through the Use
of Evaluation Techniques in the Federal Government's Computer
Operations," B-115369, Aug. 22, 1972.

57

APPENDIX III APPENDIX III

National Bureau of Standards Publications -m----m

"Synopsis of Interviews from a Survey of Software Tool Usage,"
Herbert Hecht, NBS Internal Report 81-2388, Nov. 1981.

"Final Report: A Survey of Software Tools Usage," Herbert Hecht,
NB Special Publication 500-82, Nov. 1981.

"Proceedings of the NBS/IEEE/ACM Software Tools Fair," Raymond C.
Houghton, Jr., Editor, NBS Special Publication 500-80, Oct. 1981.

"NBS Programming Environment Workshop Report," Martha A. Branstad
and W. Richards Adrion, Editors, NBS Special Publication 500-78,
June 1981.

"Validation, Verification, and Testing of Computer Software,"
W. Richards Adrion, Martha A. Branstad, and John C. Cherniavsky,
NBS Special Publication 500-75, Feb. 1981.

"Software Development Tools: A Reference Guide to a Taxonomy of
Tool Features," NBS Letter Circular 1127, Feb. 1981.

"Features of Software Development Tools," Raymond C. Houghton, Jr.,
NBS Special Publication 500-74, Feb. 1981.

"NBS Software Tools Database," Edited by Raymond C. Houghton, Jr.
and Karen A. Oakley, NBSIR-80-2159, Oct. 1980.

"Computer Performance Evaluation Users Group (CPEUG) 16th Meeting,"
Harold Highland, Editor, NBS Special Publication 500-65, Oct. 1980.

"Conversion of Federal ADP Systems: A Tutorial," Joseph Collica,
Mark Skall, Gloria Bolotsky, NBS Special Publication 500-62,
Aug. 1980.

"Final Report Software Tool Taxonomy," prepared by Donald J. Reifer
and Harold A, Montgomery, prepared for NBS under contract
NB79SBCA0273, June 1, 1980.

"Using ANS FORTRAN," Gordon Lyon, Editor, NBS Handbook 131,
Mar. 1980.

"Validation, Verification, and Testing for the Individual Pro-
grammer," Martha A. Branstad, John C. Cherniavsky, W. Richards
Adrion, NBS Special Publication 500-56, Feb. 1980.

“COIIIpUter Performance Evaluation Users Group (CPEUG) 15th Meeting,"
James E. Weatherbee, Editor, NBS Special Publication 500-52,
Oct. 1979.

"Technology Assessment: ADP Installation Performance Measurement
and Reporting," NBS Special Publication 500-53, U.S. Department
of Commerce, Sept. 1979.

58

APPENDIX III APPENDIX III

"Guidelines for Documentation of Computer Programs and Automated
Data Systems for the Initiation Phase," FLPS PUB 64, Aug. 1, 1979.

"Guide to Major Job Accounting Systems: The Logger System of the
UNIVAC 1100 Series Operating System," National Bureau of $tand-
ards Special Publication 500-43, Dec. 1978.

"Computer Performance Evaluation Users Group (CPEUC) 14th Meeting,"
James E. Weatherbee, Editor, NBS Special Publication 500-41,
October 1978.

"COBOL Instrumentation and Debugging: A Case Study," Gordon Lyon,
NBS Special Publication 500-26, Jan. 1978.

"Computer Performance Evaluation Users Group," Edited by Dennis
M. Conti and Josephine L. Walkowicz, NBS Special Publicat:ion
500-18, Sept. 1977.

"Software Tools: A Building Block Approach," I. Trotter Hardy,
Belkis Leong-Hong, and Dennis W. Fife, NBS Special Publication
500-14, Aug. 1977.

~ "Computer Software Management: A Primer for Project Manag'ement
and Quality Control," Dennis W. Fife, NBS Special Publication
500-11, July 1977.

"Guideline On Computer Performance Management: An Introduction,"
FIPS PUB 49, May 1, 1977.

"Appraisal of Federal Government COBOL Standards and Software
Management: Survey Results," Donald R. Deutsch, NBSIR, 7~6-1100,
Aug. 1976.

"Guidelines for Documentation of Computer Programs and Automated
Data Systems," FIPS PUB 38, Feb. 15, 1976.

~ "Aids for COBOL Program Conversion," FIPS PUB 43, Dec. 1975.

I "COBOL," FIPS PUB 21-1, Dec. 1, 1975. /.

~ Other Government Publications

"Software Improvement-- A Needed Process in the Federal Govern-
ment," Report OSD-81-02, Office of Software Development, ADTS,
GSA, June 3, 1981,

"Management Guidance for Developing and Installing an ADP Per-
formance Management Program," GSA, Nov. 1978.

~ "Performance Improvement ASCII COBOL and the Run Stream," Forum
Proceedings Fort Collins Computer Center, Nov. 1977.

"American National Dictionary fdr Information Processing,"
American National Standards Committee X3-Computers and Informa-
tion Processing, Sept. 1977.

59

APPENDIX III APPENDIX III
d

"Computer Program Optimization," Annette J. Krygiel, Defense
Mapping Agency Aerospace Center, Apr. 1974.

"Structured Programming Using COBOL 1974 (ANSI COBOL)," FADPUG
Presentation by George Baird, March 13, 1974.

"Public Law 89-306," 89th Congress, H.R. 4845, Oct. 30, 1965.

Nongovernmental Publications

"Software Performance Viewed A Design Problem," Rita Shoor,
ComputerWorld, Page 14, Dec. 15, 1980.

"A Procedure to Review and Improve the Operational Efficiency
of Production Systems," Robert A. Grossman, June 19, 1980,
Proceedings of Joint NBS/ACM Symposium on Pathways to System
Integrity.

"Quality Assurance Tools," Robert W. Shirey, ComputerWorld,
pp. 31-49, May 19, 1980.

"Tools and Techniques," EDP PERFORMANCE MANAGEMENT HANDBOOK,
pp. 4.650.1-4.650.4, Mar. 1980.

"The Art of Software Testing," G.J. Myers, New York, W iley, 1979.

"The COBOL Environment" Crawford and Grauer, Englewood Cliffs, N.J.
Prentice-Hall, 1979.

"Controlled Resource Management Through Computer Perfcrmance
Evaluation," Edited by C. M. Edwards, III, John C. Kelly,
Charles Ross, Computer Measurement Group, Inc., Dec. 1979.

"The Next COBOL Standard," Robert Fried and Robert McKenzie,
_Datamation pp. 175, 178, 180, Sept. 1979.

"Management Perspectives on Programs, Programming and Productiv-
ity" Presented by Robert C. Kendall, GUIDE 48, 1979.

"COBOL--The 1980 Standard: A Preview," Auerbach Publilshers
pp. l-12, 1978, Computer Programming Management.

"'Making the Most of Performance Monitors," W illiam B. Engle,
Computer Decisions, p. 50, Nov. 1978. --

"Improving Software Performance at the Social Security
Administration," Amr A. El-Sawy, Timothy L. Oliver, Eric D.
Siegel, MITRE Technical Report MTR-8044, Sept. 1978.

"Execution Time Optimization of COBOL 5 Programs," Sunnyvale,
Calif., Development Division, Control Data Corporation, Sept. 15,
1978.

60

APPENDIX III APPENDIX III

“A Critical Assessment of EDP Objectives,” McCaffery, Seligman,
and von Simson, Inc., Sept. 1978.

“A Survey of EDP Performance Measures,” Joseph R. Matthews,
government Data Systems, pp. 29-32, Jul./Aug. 1978.

“COBOL Optimization Techniques” Judith Stevens Budney, Seventeenth
Annual Technical Symposium, NBS, June 15, 1978.

“The Impact of Program and Programmer Characteristics on Program
Size, Earl Chrysler, National Computer Conference, AFIPS Con-
ference Proceedings, pp. 581-87, June 5-8, 1978.

IBM VS COBOL for OS/VS (Compiler & Library), Second Edition, May
1978, IBM Corporation, Armonk, N.Y.

“Optimizing Program Quality and Programmer Productivity,” Capers
Jones, IBM Corp. SHARE 50, Mar. 7, 1978.

“A Method for the Time Analysis of Programs,” S.L. de Freitas
and P.J. Lavelle, IBM Systems Journal pp. 26-38, 1978. -- --

“EDP Effectiveness Evaluation,” Corydon D. Hurtado; Journ’al of
Systems Management, pp. 18-21, Jan. 1978.

--

“Gaining An Awareness of the Performance of COBOL Programs,”
Paul J. Jalics, Computer Measurement Group Proceedings, pp.
61-65, 1978.

“Software Metrics,” Tom Gilb, 1977, W inthrop Publishers, Inc.

“Penguin Dictionary of Computers,” Anthony Chandor, John ‘Graham,
Robin W illiamson, Second Edition, 1977.

“Software Tuning, Not Upgrade, Urged for 370 Sites” Don Leavitt,
ComputerWorld p. 13, Oct. 4, 1976.

“Array Handling in COBOL Compilers,” M. H. W illiams and A. R.
Bulmer, Software Practice and Experience, pp. 469-474, 1,977.

“The Effect of COBOL Efficiency Techniques on Computer Run Costs,”
Nancy V. McGuire, Sixteenth Annual NBS/ACM Technical Symposium,
Systems and Software, June 2, 1977.

“COBOL Optimization and Flowcharting” Mary W. Headrick, FOCUS-17
Conference, May 23-26, 1977.

“Improving Performance the Easy Way,” Paul J. Jalics, Datamation,
pp. 135-137; Apr. 1977.

--

“COBOL Tuning in VS” Session Report, SHARE 48, Volume II, Mar.
1977.

APPENDIX IV APPENDIX IV

UNITED STATES DEPARTMENT OF COMMERCE
The Inspector General
Washmgton, D.C 20230

December 10, 1981

Mr. Henry Eschwege
Director, Community and Economic
Development Division
U. S. General Accounting Office
Washington, 0. C. 20548

Dear Mr. Eschwege:

This is in reply to your letter of November 6, 1981,
requesting comments on the draft report entitled
"Improving COBOL Applications Can Recover Significant
Computer Resources".

We have reviewed the enclosed comments of the Actin'g
Assistant Secretary for Productivity, Technology and
Innovation for the Department of Commerce and believe
they are responsive to the matters discussed in the
report.

Sincerely,

67%
Sherman M Funk
Inspector General

Enclosure

I 62

APPENDIX IV APPENDIX IV

UNftED STATES DEPARTMENT OF COMMERCE
The Assistant Secretary for Productivity,
Technology and Innovation
Washmgtan. D C 20230
G?Oill 377-31 11

NOV 25 1981

Mr, W. D. Campbell
U.S. General Accounting Office
441 G Street, N.W.
Washington, D.C. 20548

Dear Mr. Campbell:

Thank you for the opportunity to comment on the draft report entitled "Improving
COBOL Applications Can Recover Significant Computer Resources." Improvement
of high-use Federal computer application programs written in the COBOL pro-
gramming language can be a worthwhile and cost-saving objective, and the report
wisely cautions against optimization at the expense of language standards (p.22).

~ We do not concur at this time in the report's recommendation that "The
~ National Bureau of Standards (NBS) should publish guidance on the effective
~ and efficient use of COBOL for applications." Optimization of application

software can occur at several levels in a computer system, from the microcode
that executes machine language instructions to the level at which source
programs migrate from one hardware configuration to another. In its planning

~ to develop most urgently needed standards and guidelines, the Institute for
Computer Sciences and Technology (ICST) at NBS has chosen to address the
three highest levels of optimization where the return on agency effort is
greatest: inter-system portability (language standards), total system
performance, and application software life-cycle management. At the present
time, this three level, top-down approach to the problem of sub-optimal
application software has higher priority in allocating ICST’s appropriated
resources than developing guidance in the use of specific source languiages,

~ such as COBOL. If the opportunity to develop this product on a reimbursable
~ basis should arise, however, we would expect ICST to review its staffing
~ requirements and reconsider such an undertaking. A supplementary list of
~ ICST products that are broadly applicable to the development and maintenance
1 of COBOL programs, in addition to those listed in Appendix III of the draft
I report, is attached.

j The report questions ICST's reluctance to develop a handbook for COBOL when
~ it had already published one for FORTRAN (pp. 14 and 56). Some background
~ may help to explain the reason. The FORTRAN handbook was to have been part

of a series of handbooks for all major programming languages, including
COBOL, to be written by leading experts in the field. Only one such expert,
a FORTRAN specialist who had already developed most of the raw materials on
his own time, was willing to take on the task for the amount that ICST was
able to allocate to it. Although this one product has been useful and well-
received, ICST concluded that the language-by-language approach to improving
software efficiency was not feasible for a program of its size.

63

APPENDIX IV APPEdDIX IV

We propose the following specific changes in the draft report:

1. Delete or modify the sentence beginning on page 13, line 8 that reads:
"An NBS official told us he felt that most COBOL programmers have the
attitude that getting the program work any way they can is satisfactory."

This is not the opinion of ICST. ,Xt would be more accurate to say
that many COBOL programmers often have to settle for producing a
program that works, but that the result is often not satisfactory to
the conscientious programmer.

2. Delete or modify the sentence beginning on page 14, line 19 that
reads: "The NBS officials also said that it is not clear that guidance
published by NBS would be read or followed any more than :commercially
published guidance."

The implication is that government programmers neither read nor follow
published guidance, and that the source of the guidance makes no
difference. ICST does not agree with either implication. Programmers
are eager for high quality guidance, and we have found that they tend
to give ICST guidance documents close attention and respect.

3. Delete or modify the sentence on page 14, line 21 (and the similar
sentence on page 56) that reads: "Our representative poi ted out to
the NBS representatives that NBS had already published Ii sp cific guidance
on using the FORTRAN language and if that was worthwhile, surely
COBOL guidance would be also."

This is misleading in view of the background for the FORTRAN
handbook summarized above.

In summary, this report is a worthwhile attempt to focus on the need for
careful and continuous attention at the ADP installation level to the
efficiency of application software.

Ernest Ambler
Acting Assistant Secretary

Enclosure

cc: Henry Eschwege

64

APPENDIX IV APPENDIX IV

Suggested Additional NBS Products

'Computer Performance Evaluation Users Group (CPEUG) 14th Meeting,' Ja:mes
E. Weatherbee, Editor, NBS Special Publication 500-41, October 1978,

"Computer Performance Evaluation Users Group (CPEUG) 15th Meeting," James
E. Weatherbee, Editor, NBS Special Publication 500-52, October 1979.

"Computer Performance Evaluation Users Group (CPEUG) 16th Meeting," Harold
Highland,.Editor, NBS Special Publication 500-65, October 1980.

"NBS Programming Environment Workshop Report," Martha A. Branstad and
W. Richards Adrion, Editors, NBS Special Publication 500-78, June 1981,

"Proceedings of the NBS/IEEE/ACM Software Tools Fair," Raymond C. Houghton,
Jr., Editor, NBS Special Publication 500-80, October 1981.

) "Final Report:
I

A Survey of Software Tools Usage,' Herbert Hecht, NBS
Special Publication 500-82, November 1981.

"Synopsis of Interviews from a Survey of Software Tool Usage," Herbert
Hecht, NBS Internal Report 81-2388, November 1981.

"Features of Software Development Tools," Raymond C. Houghton, Jr., NBS
Special Publication 500-74, February 1981.

"Software Development Tools: A Reference Guide to a Taxonomy of Tool
Features," NBS Letter Circular 1127, February 1981,

"Aids for COBOL Program Conversion," FIPS PUB 43, December 1975.

) "Validation, Verification, and Testing of Computer Saftware," W. Richbrds
I Adrion, Martha A. Branstad, and John C. Cherniavsky, NBS Special Publication
) 500-75, February 1981.

65

APPENDIX IV APPENDIX IV

General
Services
Administration Washington, DC 2046!5

Honorable Charles A. Bowsher
Comptroller General
of the United States
U.S. General Accounting Office
Jashington, DC 20548

Dear Mr. Bowsher:

In response to 13-r. Horan"s letter of November 9, 1981, enclosed
are the General Services Administration's comments on the draft
GAO Report "Improving COBOL Applications Can Recover Significant
Computer Resources."

2 -in?ntrctor
Enclosure

APPENDIX IV APPENDIX IV

GSA welcomes the opportunity to review and comment on your draft report’
to the Congress entEtlad *Iqmoviog COBOL App 1 i :a t ions Can Recuver
Signif icant Computer Resources .” There cannot be’ enough emphasis
placed on the importance of computer software to agencies’
effectiveness. It was to this end that GSA formed the Office of
Software Development to provide a central focus for the resolution of
problems associated with agencies’ computer programs. Your report
supports our policy of en’couraging agencies to undertake substantial
software improvement programs as outlined in our monograph “Software
Improvement - A Neaded Process in the Federal Government.” 1 Your
report adds specific items of knowledge and guidance to this.

It is particularly good to notice you emphasize that projects to reduce
computer resourcee consumed are only valid when such reductions repay
their own cost without conflicting with such other software management
objectives as-

1. preeerving or improving the maintainability of the programs;

2. ensuring they meet the users needs; and

3. ensuring reliability,
situations.

with defenses against problem

Building and maintaining software is still a labor intensive process
and, while labor costs are increasing annually, productivity has not
eignificantly increased since the introduction of high level languages.
Hardware per-unit costs meanwhile have plummeted and can be expected to
continue to do so during this decade. Software is already the major
ADP cost today, accounting for approximately two thirds of total ADP
costa. Given the above trends, this proportion can only increas’e in
theforeseeable future.Hence, software improvement strategies that
substitute machine processing for programmer labor are to be encouraged
and such contrary strategies as reducing computer resource consumption
at the expense of maintainability are to be discouraged.

Of all fields, computer science is one where the current and projected
shortfall of trained staff is very alarming, and in considering soft’ware
improvement projects it is necessary to recognize the constraints of
f inrt e human resources. It is not sufficient that this type of work
generates enough reduction of resources consumed to offset its own
labor and machine costs, It is necessary to consider lost
opportunities and to identify and tackle the highest priority (and
potentially largest pay-off) improvements rather than approach software
improvement on a piecemeal basis. GSA is highly recommending agencies
(particularly those with large systems) prepare a multi-year software
improvement plan to ensure that priorities are correctly set.

1. Report OSD-81-102, OfFice of Software Development, ADTS, GSA,
June 3, 1981.

67

APPENDIX IV

Fina 1 ly , we would emphasize quality control and testing in conducting
any 8of tware improvement program. While at one end of the spectrum
simple optimization by use of an automatic optimizer would probably not
require significant testing, improvements that include such items as
elimination of intermediste files, file restructuring or program
restructuring should not be undertaken without a test$ng plan,
methodology, and strict quality control. Otherwise, faults will be
introduced which will degrade the other software management objectives
you mention of maintainability, user responsiveness and reliability.

Our Off ice of Software Development will follow your recommendation of
working with the National Bureau of Standards (NBS) in publishing
guidance on the effective and efficient use of COBOL applicbtions and
will also continue its program of providing further guidance and
assistance to agencies in improving their software.

APPENDIX IV APPENDIX IV

DEPARTMENT OF THE AIR FORCE
ChDIRAL CO(HmR PWWWMANC~ b’ALUATK)N AND SIMULATION CENTER UIFCC)

WASHWWON, D.C. 20220

27 November 1981

Mr. W. D. Campbell
Acting Director, Accounting and

Financial Management Division
United States General Accounting Office
Washington, D.C. 20548

RE: Your Letter dated November 6, 1981

~ Dear Mr. Campbell:

FEDSIM has no comment on the substance of the draft report
"Improving COBOL Applications Can Recover Significant Computer
Resources". We have not had extensive experience in the
optimization of COBOL programs and thus do not have the
background be able to characterize Government-wide practices in
this area.

In this regard, I would appreciate it if you would clarify the
point that Mr. McKenzie was informally contacted by your office
as an individual and not as a "FEDSIM representative." Thus any
views he expressed should not be construed as being based upon
the "corporate" experience of FEDSIM as a whole.

i Technical Director

~(913630)

69

I
”

w muA QPFORYUNIYY UlPCQYll

UMI’TED STATES
G4WIWAL ACCQWTIM OFFICE

WASHIWGTOW, D.C. 2OW

